
Massachusetts Institute of Technology
6.5610: Applied Cryptography February 19, 2024
Henry Corrigan-Gibbs and Yael Tauman Kalai Due: March 1, 2024 at 4:59pm

Problem Set 2

Please submit your problem set, in PDF format, on Gradescope. Each problem should be in a separate page.
You are to work on this problem set in groups. For problem sets 1, 2, and 3, we will randomly assign the

groups for the problem set. After problem set 3, you are to work on the following problem sets with groups
of your choosing of size three or four. If you need help finding a group, try posting on Piazza. See the course
website for our policy on collaboration. Each group member must independently write up and submit their
own solutions.

Homework must be typeset in LATEXand submitted electronically! Each problem answer must be provided
as a separate page. Mark the top of each page with your group member names, the course number (6.5610),
the problem set number and question, and the date. We have provided a template for LATEX on the course
website (see the Psets tab at the top of the page).

Problem 2-1. [Extra Credit] Seminar attendance

Nick Sullivan is coming to speak at our security seminar. He co-chairs the IRTF Crypto Forum Research
Group, which standardizes many of the crypto algorithms we use on the Internet. Until recently, he was
also the head of research at CloudFlare, where he was one of the industry leaders in deploying new and
experimental crypto protocols at scale.

We will give extra credit on this problem set if you attend.

Details are:

•Time: Thursday, February 29 at noon

•Place: 32-D463 (Star)

•Also important: There will be free food.

•Even more important, please register at this URL so that we get enough free food:
https://forms.gle/XbNcqjZohvh898677

If you have a timing conflict at this time, we cannot give make-up extra credit but there will be many future
extra credit opportunities!

There are other seminar talks as well and many are related to the content that we will cover in this class!
See https://securityseminar.csail.mit.edu/ for details.

Problem 2-2. Linearly Homomorphic Encryption and PIR Recall Regev’s secret-key encryption
scheme from lecture, where the secret key is s←R Zn

q ,

Enc(s, b ∈ {0, 1}) = (a, a⊤s+ e+ b · ⌊q/2⌋),

where a ←R Zn
q and e ←R χ ∈ Zq, for some error distribution χ over Zq. Suppose χ is a uniform distribution

over the interval [−B,B] ⊆ Zq for some B. Moreover, decryption is:

Dec(s, (a, c)) = 0

{
0 if |c− a⊤ · s| < q/4

1 otherwise
.

(a) What restriction is needed on B to ensure decryption correctness?

6.5610 : Handout 1: Problem Set 2 2

(b) Recall that this encryption scheme is additively homomorphic. That is,

Enc(µ) + Enc(µ′) = (a,a⊤s+ e+ ⌊q/2⌋µ) + (a′,a′⊤s+ e′ + ⌊q/2⌋µ′)

= (a+ a′, (a+ a′)⊤s+ (e+ e′) + ⌊q/2⌋(µ+ µ′))

= Enc(µ+ µ′)

As we compute more additions of encryptions, note that the error grows.

Give possible parameter values for B and q in terms of the security parameter λ so that the scheme
supports poly(λ) many additions without breaking decryption correctness.

(c) Consider the following variant of Regev’s symmetric encryption scheme, where the message space is
{0, 1, 2}: As before the secret key is s←R Zn

q and the new encryption algorithm is defined by

Enc(s,m) = (a,a⊤s+ e+m⌊q/3⌋)

where a←R Zn
q and e← χ.

Give a decryption algorithm that will ensure correctness of this scheme, assuming the error is in the
interval [−B,B] and B is small (say smaller than q

10).

How can you use this encryption scheme to construct a PIR scheme (for a sufficiently small B)?

Problem 2-3. Negligible Functions and CPA Security Let µ : N → R be a negligible function, and
let p be a polynomial such that p(k) ≥ 0 for all k > 0. State whether the following functions are negligible
with a 1-3 sentence explanation.

(a) µ(k) · p(k)
(b) µ(k)1/p(k)

(c) µ(k)1/c for some constant c > 0

(d) µ1(k) + µ2(k) for negligible functions µ1, µ2 : N→ R

Let F : K × {0, 1}n → {0, 1}n be a PRF. State whether the following encryption schemes are CPA secure
with a 1-2 sentence explanation.

(e) Enc(k,m)
def
= m⊕ F (k, 0n)

Dec(k, c)
def
= c⊕ F (k, 0n)

(f) Enc(k, (m1,m2))
def
= (r,m1 ⊕ F (k, r),m2 ⊕ F (k, r))

Dec(k, (r, c1, c2))
def
= (c1 ⊕ F (k, r), c2 ⊕ F (k, r))

Recall our construction of a CPA secure scheme using a PRF.

(g) We know that this construction provides secrecy, but show that it does not provide message integrity.
More specifically, show that if an adversary is given the ciphertext c = Enc(k,m), then the adversary
can construct a new ciphertext c′ for the message m ⊕m2 for any m2 without knowing the original
message m.

Problem 2-4. Implementing Regev

In this problem, you will work on Regev’s public key encryption scheme. Specifically, we will use the following
version:

•Private key: s←R Zn
q

•Public key: A←R Zm×n
q , u = As+ e ∈ Zm

q where e←R [−B,B]m ⊆ Zm
q for some bound B.

6.5610 : Handout 1: Problem Set 2 3

•Encryption:
Enc(b) = rT ·

[
A u

]
+ b ·

(
0, 0, · · · , 0,

⌊q
2

⌋)
where b is a message bit and r←R {0, 1}m ⊆ Zm

q .

You can find a Python file on Piazza:

•encrypt.py: This file contains the template file for you to fill in the encryption function. The public
key and the parameters can also be found here. It is recommended to not touch anything other than
the enc function.

(a) It is clear that if the error vector is too big, the decryption scheme might fail. But what happens if
the error vector is really small? If every entry is in the range [−B,B], an attacker can bruteforce the
error vector and recover the secret key in time O(Bn) (not O(Bm) because we only need n equations
to find the secret key). It turns out that there’s a much stronger attack based on lattice reduction
algorithms. We won’t describe the details here, but the attack finds a candidate (s′, e′) such that
u = A · s′ + e′ and every entry of e′ is bounded by T :

|e′i| ≤ T = 2(n+m)/4 · (qm−n ·Bn+1)1/(n+m+1) (1)

The hope is that e = e′ and s = s′. To verify this, we ask the question ”How many valid error vectors
are there in the range [−T, T]m?” If there’s only one such vector, then we are 100% sure that e = e′;
otherwise, e′ might just be another solution.

Since there are qn possible error vectors (every s is mapped to an error vector). The probability that
a random vector of length m is a valid error vector is qn/qm = qn−m. Therefore, the expected value
of the number of valid vectors is

(2T)m · q(n−m),

where T is defined as in Eq. (1). If this quantity is at most one, we are confident that there’s only
one valid small error vector in the range [−T, T]m and thus e = e′ and s = s′.

Using the parameters in encrypt.py, find the minimum positive integer B such that

(2T)m · q(n−m) > 1

Bonus: the public key is generated with a smaller error vector, can you recover the secret key? Come
to Thursday’s office hour and discuss with the TA!

(b) Implement the enc() in encrypt.py and submit the Python file (i.e. filename ends with .py) to the
Gradescope. Make sure that r is not deterministic.

