Recitation 7: RSA review

6.5610, Spring 2023

March 24, 2023

1 RSA

Recall the RSA trapdoor one way permutation, which has forward function F and an inversion function I.

- $\operatorname{Gen}\left(1^{\lambda}\right) \rightarrow(\mathrm{sk}, \mathrm{pk})$.
- Sample two random λ-bit primes p, q such that $p=q=5 \bmod 6$.
- Output sk $=(p, q)$ and $\mathrm{pk}=N$, where $N=p \cdot q$.
- $F(\mathrm{pk}, x) \rightarrow y$
- The input space is $Z_{N}=\{0,1, \ldots, N-1\}$
- Output $y=x^{3} \bmod N$
- $I(\mathrm{sk}, y) \rightarrow x$
- We want to solve for x such that $x^{3}=y \bmod N$
- Which means that $x^{3}=y \bmod p$ and $x^{3}=y \bmod q$.
- Find the cube roots x_{p}, x_{q} of $y \bmod p$ and q, respectively.
- Use the Chinese Remainder Theorem (CRT) to find $x \in Z_{N}$ such that $x=x_{p} \bmod p$ and $x=x_{q}$ $\bmod q$.
- Output x

1.1 Finding cube roots modulo a prime

If p is a prime congruent to $5 \bmod 6$, then for all $a \in Z_{p}^{*}$, at least one element r of $a^{\frac{p+1}{6}},-a^{\frac{p+1}{6}}$ is such that $r^{3}=a \bmod p$. The proof is in the lecture notes.

1.2 Chinese Remainder Theorem (CRT)

Let p and q be distinct primes. For all integers a and b , the pair of congruences $x=a \bmod p$ and $x=b$ $\bmod q$ has a unique and efficiently computable solution modulo $p q$.

Proof idea: Let $p_{1}=p^{-1} \bmod q$ and $q_{1}=q^{-1} \bmod p$. Then the solution is:

$$
x=a q_{1} q+b p_{1} p \quad \bmod p q
$$

1.3 Example RSA encryption and decryption

We will walk through an example encryption and decryption of a message with real, small numbers.

- Let the secret key be $p=5, q=11$. Thus, the public key is $N=55$.
- Let's encrypt message $m=8$. We get $c=m^{3}=512 \bmod 55=17$.
- To decrypt the ciphertext $c=17$, we want to find x such that $x^{3}=17 \bmod N$.
- This means that $x^{3}=17 \bmod 5$ and $x^{3}=17 \bmod 11$
- We want to find x_{p} such that $x_{p}^{3}=17=2 \bmod 5$.
- We use the modular cube root algorithm: $2^{\frac{p+1}{6}}=2 \bmod 5$.
- Now, $2^{3}=8=3 \bmod 5$. That's not right, so we try the negative. $-2 \bmod 5=3$. We check that $3^{3}=27=2 \bmod 5$.
- So $x_{p}=3$.
- Similarly, we want to find x_{q} such that $x_{q}^{3}=17=6 \bmod 11$.
$-6^{\frac{q+1}{6}}=36=3 \bmod 11$.
$-3^{3}=27=5 \bmod 11$, which is not right. We try the negative. $-3 \bmod 11=8$. We check that $8^{3}=512=6 \bmod 11$.
- So $x_{q}=8$.
- Now we want to find the original message $x \in Z_{N}$ such that $x=x_{p} \bmod p$ and $x=x_{q} \bmod q$.
- We use the Chinese Remainder Theorem, which says that $x=x_{p} q_{1} q+x_{q} p_{1} p \bmod p q$, where $p_{1}=p^{-1}$ $\bmod q$ and $q_{1}=q^{-1} \bmod p$.
- $p_{1}=5^{-1} \bmod 11=9$ and $q_{1}=11^{-1} \bmod 5=1$
- So $x=3 \cdot 1 \cdot 11+8 \cdot 9 \cdot 5=8 \bmod 55$, which is the original message!

2 Practice problems

2.1 Example: RSA variant

Bob extends RSA so that message m is encrypted as the pair $\left(r^{e}, h(r) m^{e}\right)$, where h is a hash function mapping inputs to Z_{n}^{*}. Argue that his new scheme is not CCA secure.

Solution: It is definitely malleable: $E(2 m)=\left(r^{e}, h(r)(2 m)^{e}\right)$, and so is not CCA secure.

2.2 Example: RSA digital signature

Consider the basic RSA signature scheme defined by

$$
\operatorname{Sign}(m)=m^{d} \quad(\bmod n),
$$

and

$$
\operatorname{Verify}(m, \sigma)=1 \text { if and only if } \sigma^{e}=m \quad(\bmod n),
$$

where the secret key is the pair (d, n), and the public key is the pair (n, e), where n is a product of two primes and $e \cdot d=1 \bmod \varphi(n)$.
(a) Is this signature scheme secure?
(a) Is the corresponding hash-and-sign scheme, where the signature algorithm is defined by $\operatorname{Sign}(m)=$ $H(m)^{d}(\bmod n)$, secure in the Random Oracle Model? Explain your answer (though you do not need to provide a formal proof).

Solution:

(a) This signature scheme is not secure. The adversary can easily sign a message by first (arbitrarily) choosing a signature $\sigma \in Z_{n}^{*}$, and then computing the message $m=\sigma^{e} \bmod n$. Note that (m, σ) is a valid message/signature pair.
(b) Yes, this scheme is secure in the random oracle model. Intuitively the reason is the following: First note that the signing oracle is of no use to the adversary since it can easily be simulated by simulating the Random Oracle H, as follows: Whenever the adversary requests a signature of a message m_{i}, simply choose at random $\sigma_{i} \leftarrow Z_{n}^{*}$ and set $H\left(m_{i}\right)=\sigma_{i}^{e} \bmod n$. Note that σ_{i} is a valid signature of m_{i}. Thus, the adversary is basically just getting random values of Z_{n}^{*} from the signing oracle; these values are of no use to him in forging signature for other messages.
Therefore, it suffices to argue that the adversary cannot generate a signature of any (new) message, assuming the hardness of the RSA problem. To this end, note that for any (new) adversarially chosen message m, the value $H(m)$ is truly random (and unknown before querying the oracle H). Therefore, generating a valid signature for m requires computing $H(m)^{d} \bmod n$, where $H(m)$ is a truly random element, which is equivalent to solving the RSA problem.

2.3 Example: Randomized RSA digital signature

Suppose we are interested in developing a randomized digital signature scheme, where a message may have many signatures, and security now also requires that an Adversary is not able to produce a new but different signature for a message he has seen other signatures for already.

Consider the following randomized RSA-based signature proposal. We have $P K=(n, e, H)$ and $S K=$ (d) as usual for RSA, where H is a hash function modeled as a random oracle from messages to Z_{n}^{*}. The signature $\sigma(m)$ of a message m is defined

$$
\sigma(m)=\left(H(r),(H(m) \cdot r)^{d} \quad(\bmod n)\right)
$$

where r is a fresh random value from Z_{n}^{*}.
Is σ secure (using the expanded definition of signature security given above)? Explain.
Solution: No, it is not secure.
Having seen one signature $\sigma(m)$ for a known message m, the Adversary can produce a signature for an arbitrary other message m^{\prime} as follows. Note that the Adversary can compute $H(m)$ and $H\left(m^{\prime}\right)$, since m and m^{\prime} are known and H is public. Also, the Adversary can compute $H(m) \cdot r=\left((H(m) \cdot r)^{d}\right)^{e}(\bmod n)$.

The Adversary can then compute a value

$$
r^{\prime}=(H(m) \cdot r) / H\left(m^{\prime}\right) \quad(\bmod n)
$$

so that

$$
H(m) \cdot r=H\left(m^{\prime}\right) \cdot r^{\prime} \quad(\bmod n)
$$

The Adversary can then easily compute $H\left(r^{\prime}\right)$, which he can combine with the known signature for m to compute the signature for m^{\prime} :

$$
\begin{aligned}
\sigma\left(m^{\prime}\right) & =\left(H\left(r^{\prime}\right),\left(H\left(m^{\prime}\right) \cdot r^{\prime}\right)^{d} \bmod n\right) \\
& =\left(H\left(r^{\prime}\right),(H(m) \cdot r)^{d} \bmod n\right)
\end{aligned}
$$

3 References

https://65610.csail.mit.edu/2023/lec/l13-rsa.pdf
6.857 past quizzes

