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March 24, 2023

1 RSA

Recall the RSA trapdoor one way permutation, which has forward function F and an inversion function I.

• Gen(1λ)→ (sk, pk).

– Sample two random λ-bit primes p, q such that p = q = 5 mod 6.

– Output sk = (p, q) and pk = N , where N = p · q.

• F (pk, x)→ y

– The input space is ZN = {0, 1, ..., N − 1}
– Output y = x3 mod N

• I(sk, y)→ x

– We want to solve for x such that x3 = y mod N

– Which means that x3 = y mod p and x3 = y mod q.

– Find the cube roots xp, xq of y mod p and q, respectively.

– Use the Chinese Remainder Theorem (CRT) to find x ∈ ZN such that x = xp mod p and x = xq

mod q.

– Output x

1.1 Finding cube roots modulo a prime

If p is a prime congruent to 5 mod 6, then for all a ∈ Z∗
p , at least one element r of a

p+1
6 ,−a

p+1
6 is such that

r3 = a mod p. The proof is in the lecture notes.

1.2 Chinese Remainder Theorem (CRT)

Let p and q be distinct primes. For all integers a and b, the pair of congruences x = a mod p and x = b
mod q has a unique and efficiently computable solution modulo pq.

Proof idea: Let p1 = p−1 mod q and q1 = q−1 mod p. Then the solution is:

x = aq1q + bp1p mod pq
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1.3 Example RSA encryption and decryption

We will walk through an example encryption and decryption of a message with real, small numbers.

• Let the secret key be p = 5, q = 11. Thus, the public key is N = 55.

• Let’s encrypt message m = 8. We get c = m3 = 512 mod 55 = 17.

• To decrypt the ciphertext c = 17, we want to find x such that x3 = 17 mod N .

• This means that x3 = 17 mod 5 and x3 = 17 mod 11

• We want to find xp such that x3
p = 17 = 2 mod 5.

– We use the modular cube root algorithm: 2
p+1
6 = 2 mod 5.

– Now, 23 = 8 = 3 mod 5. That’s not right, so we try the negative. −2 mod 5 = 3. We check
that 33 = 27 = 2 mod 5.

– So xp = 3.

• Similarly, we want to find xq such that x3
q = 17 = 6 mod 11.

– 6
q+1
6 = 36 = 3 mod 11.

– 33 = 27 = 5 mod 11, which is not right. We try the negative. −3 mod 11 = 8. We check that
83 = 512 = 6 mod 11.

– So xq = 8.

• Now we want to find the original message x ∈ ZN such that x = xp mod p and x = xq mod q.

• We use the Chinese Remainder Theorem, which says that x = xpq1q+xqp1p mod pq, where p1 = p−1

mod q and q1 = q−1 mod p.

• p1 = 5−1 mod 11 = 9 and q1 = 11−1 mod 5 = 1

• So x = 3 · 1 · 11 + 8 · 9 · 5 = 8 mod 55, which is the original message!

2 Practice problems

2.1 Example: RSA variant

Bob extends RSA so that message m is encrypted as the pair (re, h(r)me), where h is a hash function
mapping inputs to Z∗

n. Argue that his new scheme is not CCA secure.

Solution: It is definitely malleable: E(2m) = (re, h(r)(2m)e), and so is not CCA secure.

2.2 Example: RSA digital signature

Consider the basic RSA signature scheme defined by

Sign(m) = md (mod n),

and
Verify(m,σ) = 1 if and only if σe = m (mod n),

where the secret key is the pair (d, n), and the public key is the pair (n, e), where n is a product of two
primes and e · d = 1 mod φ(n).

(a) Is this signature scheme secure?

(a) Is the corresponding hash-and-sign scheme, where the signature algorithm is defined by Sign(m) =
H(m)d (mod n), secure in the Random Oracle Model? Explain your answer (though you do not need
to provide a formal proof).
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Solution:

(a) This signature scheme is not secure. The adversary can easily sign a message by first (arbitrarily)
choosing a signature σ ∈ Z∗

n, and then computing the message m = σe mod n. Note that (m,σ) is a
valid message/signature pair.

(b) Yes, this scheme is secure in the random oracle model. Intuitively the reason is the following: First note
that the signing oracle is of no use to the adversary since it can easily be simulated by simulating the
Random Oracle H, as follows: Whenever the adversary requests a signature of a message mi, simply
choose at random σi ← Z∗

n and set H(mi) = σe
i mod n. Note that σi is a valid signature of mi. Thus,

the adversary is basically just getting random values of Z∗
n from the signing oracle; these values are of

no use to him in forging signature for other messages.

Therefore, it suffices to argue that the adversary cannot generate a signature of any (new) message,
assuming the hardness of the RSA problem. To this end, note that for any (new) adversarially chosen
message m, the value H(m) is truly random (and unknown before querying the oracle H). Therefore,
generating a valid signature for m requires computing H(m)d mod n, where H(m) is a truly random
element, which is equivalent to solving the RSA problem.

2.3 Example: Randomized RSA digital signature

Suppose we are interested in developing a randomized digital signature scheme, where a message may have
many signatures, and security now also requires that an Adversary is not able to produce a new but different
signature for a message he has seen other signatures for already.

Consider the following randomized RSA-based signature proposal. We have PK = (n, e,H) and SK =
(d) as usual for RSA, where H is a hash function modeled as a random oracle from messages to Z∗

n. The
signature σ(m) of a message m is defined

σ(m) = (H(r), (H(m) · r)d (mod n))

where r is a fresh random value from Z∗
n.

Is σ secure (using the expanded definition of signature security given above)? Explain.

Solution: No, it is not secure.
Having seen one signature σ(m) for a known message m, the Adversary can produce a signature for an

arbitrary other message m′ as follows. Note that the Adversary can compute H(m) and H(m′), since m and
m′ are known and H is public. Also, the Adversary can compute H(m) · r =

(
(H(m) · r)d

)e
(mod n).

The Adversary can then compute a value

r′ = (H(m) · r)/H(m′) (mod n)

so that
H(m) · r = H(m′) · r′ (mod n) .

The Adversary can then easily compute H(r′), which he can combine with the known signature for m to
compute the signature for m′:

σ(m′) = (H(r′), (H(m′) · r′)d mod n)

= (H(r′), (H(m) · r)d mod n) .

3 References

https://65610.csail.mit.edu/2023/lec/l13-rsa.pdf
6.857 past quizzes
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