
Recitation 5: ID Schemes, Sigma Protocols, and Digital Signatures
6.5610 Spring 2023

March 10th, 2023

1 Sigma Protocols

1.1 Motivation: ID Schemes

Identification schemes are protocols for proving the identity of a given party (for example, a log
in). Ideally, a client holding secret k and only that client should be able to convince the server that
they hold secret k.

1.1.1 Security against eavesdropping attacks

We assume a passive, eavesdropping attacker. The attacker sees all messages on the network, and
they can watch as many authentications as they wish. They then must authenticate as the client.

This is a weak security goal, as it assumes the attacker does not have access to the server or any
server state. Breaches of this kind happen all the time in practice - a stronger security goal is
necessary. Instead, we assume a passive attacker that sees all messages on the network as well as
all server state. In order to achieve this goal, we use “public key” identification schemes.

1.2 Definitions

LetR be some relation (x, y). x is called the “witness” and y is called the “statement.” If (x, y) ∈ R,
then the relation R holds for the pair (x, y).

A sigma protocol is an interactive, three message protocol one party to convince another that a pair
(x, y) belongs to a relation R without revealing the witness x. The protocol has two algorithms,
a “prover” and a “verifier.” The prover knows the pair (x, y), and the verifier only knows the
statement y. The prover tries to convince the verifier that it knows x such that (x, y) ∈ R. The
verifier algorithm outputs one bit, 1 if convinced and 0 if not.

Sigma protocols take the form the shown in the figure below. (The three arrows back and forth
sort of look like Σ, giving the protocol its name!)

P V
commitment−−−−−−−→
challenge←−−−−−
response−−−−−→

The notation < P, V > (x, y) refers to a sigma protocol for pair (x, y) with prover algorithm P and
verifier algorithm V .

Sigma protocols have the following security definitions:

• Completeness: For honest prover P and honest verifier V ,

∀(x, y) ∈ R,Pr[< P, V > (x, y) = 1] = 1

1



• Knowledge soundness: ∀y,∀P ∗,∃ efficient algorithm E s.t.

Pr[E(P ∗, y)→ x : (x, y) ∈ R] ≥ Pr[< P ∗, V > (; y) = 1]− negl

• Honest-verifier zero knowledge (HVZK): ∃ efficient algorithm S s.t. ∀(x, y) ∈ R:

{transcript of < P, V > (x, y)} ≈c {S(y)}

1.3 Schnorr’s Protocol

Assume group G with generator g of order q where DLOG is assumed to be hard. Schnorr’s protocol
is as follows1:

P(x, gx) V(y = gx)

r ← Zq
t=gr−−−→

c← Zq
c←−

z = r + cx
z−→

gz
?
= tyc

Schnorr’s protocol is extremely useful, and with small modifications it can be used to prove many
facts relating to discrete log.

1.3.1 Security Properties

• Completeness: Follows by construction.

gz = gr+cx = grgcx = t(gx)c = tyc

• Knowledge soundness: Construct an extractor as follows:

1. Run P ∗ to obain transcript (t, c, z)

2. Rewind P ∗ to just after the commitment t is sent

3. Run from this point again to obtain transcript (t, c′, z′)

4. Compute z−z′

c−c′ =
(r+cx)−(r+c′x)

c−c′ = x(c−c′)
(c−c′) = x

• HVZK: Construct a simulator as follows:

1. Draw challenge c← Zq

2. Draw response z ← Zq

3. Compute t = gzy−c

4. Output (t, c, z)

1Tip for latex-ing homework: You can use a table to make these protocol diagrams!

2



1.4 Fiat-Shamir Heuristic

The Fiat-Shamir heuristic is a method of turning interactive sigma protocols into non-interactive
proofs by replacing the challenge with something the prover can compute themself.

Say you have a sigma protocol for witness-statement pair (x, y). Instead of asking the verifier for
a random challenge in step 2, the prover instead computes H(y, t) where H is a hash function.

The intuition behind the Fiat-Shamir heuristic comes from the Random Oracle Model (ROM) for
hash functions. Under the ROM, the hash function is assumed to be a truly random function.
Thus, the prover cannot predict what the output of H(y, t) will be until computing it. Also, the
output is just as random as the challenge the verifier might have drawn. Lastly, the verifier can

then check that the prover actually computed the challenge correctly by checking c
?
= H(y, t).

1.5 Practice: Discrete Log Equivalency Proofs

Schnorr’s protocol provides a way of proving that, given a generator g and a statement y, a prover
knows x such that y = gx. Now, we want to modify this protocol to prove that given two statements
(g1, y1) and (g2, y2), a prover knows x such that y1 = gx1 and y2 = gx2 . Modify Schnorr’s protocol
to meet this goal.

Tips for breaking down this problem:

1. Why doesn’t running Schnorr’s protocol twice in a row work here?

2. What role does the commitment serve in Schnorr’s protocol? What role does the challenge
and the response serve?

3. Schnorr’s protocol has already handled some of the structure and algebra necessary for proving
facts about discrete log in zero knowledge. How can you take advantage of that? What can
you “copy and paste” to make it work for two related discrete logs?

4. How will you expresss the relation between the discrete logs as part of the protocol?

Solution:

P(x, gx1 , g
x
2 ) V(y1 = gx1 , y2 = gx2 )

r ← Zq
t1=gr1 ,t2=gr2−−−−−−−−→

c← Zq
c←−

z = r + cx
z−→

gz1
?
= t1y

c
1

gz2
?
= t2y

c
2

1.6 Practice: Schnorr OR (also in lecture notes)

Now, modify Schnorr’s protocol to prove that a prover knows one of n discrete logs, without
revealing which discrete log she knows. That is, given statements y1...yn, prove that the prover
knows xj such that yj = gxj without revealing j.

3



Solution: The main idea here is to run n proofs in parallel, but use the simulator to allow the
prover to simulate all but one of the proofs.

P(xj , y1...yn) V(y1...yn)

∀i ̸= j, (ti, ci, zi)← Sim(yi)
rj ← Zq

tj = grj
t1,...,tn−−−−→

c← Zq
c←−

cj = c−
∑

i ̸=j ci
zj = rj + cjxj

c1,...,cn−−−−→
z1,...,zn−−−−−→

c
?
=

∑
i ci

∀i, gzi ?
= tiy

ci

2 Digital Signatures

Digital signature schemes are the public key analog of MACs. They are used to provide authenticity
in the public key setting.

2.1 Definitions

A signature scheme is composed of three algorithms.

• Gen(1n)→ (sk, pk)

• Sign(sk,m)→ σ

• Ver(pk,m, σ)→ {0, 1}

Signature schemes have the following security properties:

• Correctness: ∀(sk, pk)← Gen(1n),∀m ∈M

Ver(pk,m, Sign(sk,m)) = 1

• EUF-CMA2 Security: ∀ efficient adversaries A, A wins the following game with negligible
probability:

1. Challenger runs (sk, pk)← Gen(1n)

2. Challenger sends pk to A

3. A sends challenger a message mi

4. Challenger signs mi and returns σi

5. Steps 3 and 4 are repeated poly-many times to the adversary’s liking

2Existential UnForgeability under Chosen Message Attack

4



6. A outputs (m∗, σ∗)

The adversary wins if m∗ /∈ {mi} and Ver(pk,m∗, σ∗) = 1.

2.2 Construction: Schnorr Signatures

Schnorr signatures are basically the Schnorr protocol made non-interactive using the Fiat-Shamir
heuristic. Assume group G with generator g of order q. The three algorithms that make a signature
scheme are constructed as follows:

• Gen(1n)

1. Draw random x← Zq

2. Output x, gx

• Sign(sk = x,m)

1. Draw r ← Zq and compute t = gr

2. Compute c = H(gx, t,m)

3. Compute z = r + cx

4. Output σ = (t, c, z)

• Ver(pk = gx, σ,m)

1. Compute c′ = H(pk, t,m). Check c′
?
= c

2. Check gz
?
= tyc; output 1 if so and 0 else.

2.3 Practice: Hash-Then-Sign

A common paradigm in digital signatures is “hash then sign.” This refers to the practice of signing
a hash of the message instead of signing the message itself. This problem examines the security
provided by this paradigm as it interacts with signature scheme security.

1. Assume you have a signature scheme that is EUF-CMA secure. Which of the following
security properties do you need from the hash function to maintain EUF-CMA security: one-
wayness, collision-resistance, random oracle model.

Solution: collision resistance. Under the EUF-CMA security game, if an adversary sees a
signature σ for a message m and then is able to find a message m∗ for which σ also verifies,
the adversary wins the game and breaks security. If the adversary can find a collision in the
hash function, the same signature will work for both of those messages. Collision resistance
prevents the adversary from finding such a collision.

2. Assume the random oracle model for the hash function used in hash-then-sign. What security
property does the signature scheme need in order for the hash-then-sign protocol to remain
EUF-CMA secure? EUF against random message attack, EUF-CMA security, or strong EUF-
CMA security.

Solution: EUF against random message attack. Since the hash function acts as a random

5



oracle, any message the adversary may submit for signing in the EUF-CMA game gets con-
verted into a random message. Therefore, the underlying signature scheme need only be
secure against random message attack.

6


