Recitation 4: Number theory review and practice problems

6.5610, Spring 2023

March 3, 2023

1 Number theory

1.1 Basic stuff

- We'll be going over some number theory, specifically related to groups with modulus. These groups have some (believed to be) hard problems and some easy problems that are useful in Diffie-Hellman key exchange, ElGamal encryption, RSA encryption, and more.
- For a prime p, let $Z_p = \{0, 1, 2, \dots, p-1\}$. We can add and multiply elements modulo p.
- Fermat's theorem says that for any $x \in Z_p^*$ we have: $x^{p-1} = 1 \mod p$. Example: for $p = 5, 3^4 = 81 = 1 \mod 5$
- The inverse of $x \in Z_p$ is an element a such that $a \cdot x = 1 \mod p$. The inverse of x modulo p is denoted by x^{-1} .

Example: $3^{-1} \mod 5 = 2$ since $2 \cdot 3 = 6 = 1 \mod 5$

• $Z_p^* = \{1, 2, \dots, p-1\}$, the set of invertible elements in Z_p .

1.2 Structure of Z_p^*

- Z_p^* is a cyclic group. In other words, there exists a generator g such that $Z_p^* = \{1, g, g^2, \dots, g^{p-2}\}$. Example: in Z_7^* , 3 is a generator because $\{1, 3, 3^2, \dots, 3^5\} = \{1, 3, 2, 6, 4, 5\} \mod 7 = Z_7^*$
- Not every element of Z_p^* is a generator.

Example: 2 is not a generator for Z_7^* because $\{1, 2, 2^2, 2^3\} = \{1, 2, 4, 1\} \mod 7$, and this cycle will loop and it will not reach all the elements of Z_7^* .

- The order of an element g ∈ Z_p^{*} is the smallest positive integer a such that g^a = 1 mod p. The order of g ∈ Z_p^{*} is denoted by ord_p(g).
 Example: ord₇(3) = 6 and ord₇(2) = 3.
- Lagrange's theorem says that for all $g \in Z_p^*$ we have that $\operatorname{ord}_p(g)$ divides p-1.

1.3 Quadratic residues

- Quadratic residues are a subgroup of Z_p^* .
- The square root of $x \in Z_p$ is a number $y \in Z_p$ such that $y^2 = x \mod p$
 - Example: $\sqrt{2} \mod 7 = 3$ because $3^2 = 2 \pmod{7}$.
 - $-\sqrt{3} \mod 7$ does not exist.
- An element $x \in \mathbb{Z}_p^*$ is a quadratic residue if it has a square root in \mathbb{Z}_p .

- How do we test whether an element is a quadratic residue?
 - The Legendre symbol for an element $x \in Z_p^*$ is defined as

$$\left(\frac{x}{p}\right) = \begin{cases} 1 & \text{if } x \text{ is a QR in } Z_p \\ 2 & \text{if } x \text{ is not a QR in } Z_p \\ 0 & \text{if } x = 0 \mod p \end{cases}$$
(1)

- By Euler's theorem, $\left(\frac{x}{p}\right) = x^{\frac{p-1}{2}} \mod p$, so the Legendre symbol can be efficiently computed.
- Let g be a generator of Z_p^* . x is a quadratic residue if it's discrete log with respect to g is even. That is, for y such that $g^y = x$, y = 2k for some integer k
- So if x is a quadratic residue, $x^{\frac{p-1}{2}}=g^{2k\frac{p-1}{2}}=g^{k(p-1)}=1 \pmod{p}$

1.4 Easy and hard problems

- An easy problem is one that can be solved in time polynomial to the length of the input. Easy problems in Z_p^* :
 - Adding and multiplying elements.
 - Computing g^r , even if r is large (using repeated squaring).
 - Inverting an element.
 - Testing if an element is a QR or not.
- Believed to be hard in Z_p^* :
 - Discrete log problem.
 - Computational Diffie Hellman (CDH) problem.

1.5 Exercises

1. Let p = 2q + 1 be a "safe prime" (where q is prime). Clearly any quadratic residue $x = a^2 \pmod{p}$ is not a generator of Z_p^* , since its powers are also squares. Give a counterexample to the conjecture that any any non-quadratic-residue in Z_p^* other than 1 is a generator of Z_p^* .

Solution: The possible orders of elements in Z_p^* are 1, 2, q, and p-1=2q, and there are elements of each such order. The quadratic residues are 1 and those elements of order q. The element of order 2 (i.e. -1) will not be a generator of Z_p^* . Thus, -1 is a counterexample, since it only generates $\{-1, 1\}$.

2. Argue that if g is a generator of Z_p^* , where p is prime, and if k is relatively prime to p-1, then g^k is also a generator of Z_p^* .

Solution: Note that g has order p-1, and that k has an inverse ℓ modulo p-1, so that $(g^k)^{\ell} = g$, and powers of g^k are just powers of g, since $(g^k)^{\ell t} = (g^{k\ell})^t = g^t$; thus powers of g^k include all powers of g.

3. Consider the Diffie-Helman key exchange protocol over the group $G = Z_p^*$, where p is a large prime number (say a 2048-bit prime), and where g is a generator of Z_p^* . Alice sends $g^a \mod p$ and Bob sends $g^b \mod p$, where a, b are random in $\{1, \ldots, p-1\}$. The secret is $K = g^{ab} \mod p$. Does this scheme have strong security? Namely, is K indistinguishable from a random element in Z_p^* given $g^a \mod p$ and $g^b \mod p$?

Solution: No. For example if one of the messages is a QR (quadratic residue) then the key must be a QR. (This was in lecture as well)

2 Practice problems

2.1 Example: Weak SPA security.

Define "weak CPA security" (WCPA) of a conventional (non-public-key) encryption scheme $Enc(k, \cdot)$ as for CPA security, except that the Challenger can only ask for the encryption of *random* messages. That is, the Challenger may ask for, and receive, pairs of the form (r, Enc(k, r)) where r has been uniformly and randomly chosen. Argue that an encryption scheme may be WCPA secure but not CPA secure.

Solution: Suppose that Enc has the property that feeding it a message of 0 gives the key k as output, but is otherwise CPA secure if the message 0 is never input. This scheme is WCPA secure but not CPA secure, since the CPA Challenger could ask for an encryption of 0.

2.2 Example: Block cipher.

Let $\operatorname{Enc}(k, m)$ denote a given block cipher that takes as input an *n*-bit key *k* and an *n*-bit message block *m*, and returns an *n*-bit ciphertext block $c = \operatorname{Enc}(k, m)$. In this problem you may assume that Enc is an ideal block cipher.

Define a new block cipher $\text{Enc}'((k_1, k_2), m)$ in terms of Enc as follows. The block cipher Enc' takes as input a key k consisting of two n-bit key-parts k_1 and k_2 , and an n-bit message block m, and returns the 2n-bit ciphertext block

$$c = (c_1, c_2) = \operatorname{Enc}'((k_1, k_2), m) = \operatorname{Enc}(k_1, r) || \operatorname{Enc}(k_2, s)$$

where r and s are random values that add to m modulo 2^n . That is, the result is the concatenation of the encryption of a random n-bit value r under Enc using key k_1 and the encryption of s = m - r under Enc using key k_2 . Arithmetic is modulo 2^n , so that $r + s = m \pmod{2^n}$.

(a) Is Enc' a CPA-secure block cipher? Explain.

Solution: Yes. $Enc(k_1, r)$ and $Enc(k_2, s)$ are essentially fresh random values that say nothing about m.

(b) Is Enc' a CCA-secure block cipher? Explain.

Solution: No. The challenger, before receiving an encryption (c_1, c_2) of an unknown message m, can obtain an encryption (c'_1, c'_2) of the message 0. The decryption oracle will allow the challenger to decrypt the ciphertext (c_1, c'_2) (yielding m_1), and the ciphertext (c'_1, c_2) (yielding m_2). The sum $m_1 + m_2 \pmod{2^n}$ is equal to the target message m. We can ignore the negligible chance that (c_1, c_2) is equal to either of (c_1, c'_2) or (c'_1, c_2) .

2.3 Example: Symmetric cryptography in the random oracle model.

Suppose you are in a world in which there is access to a random oracle \mathcal{H} . With no other assumptions, which of the following can you construct? For each, either give your construction or argue why it cannot be constructed from \mathcal{H} . (Tip: pay careful attention to the use of any keys.)

- (a) A pseudo-random function $F(k, \cdot)$.
- (b) A CPA-secure symmetric encryption scheme.
- (c) A secure message authentication code.
- (d) A CCA–secure symmetric encryption scheme.

Solution: They can all be constructed! Access to \mathcal{H} is very powerful since it true randomness, and therefore it is pseudo-random, one-way, and collision resistant. Consider the following:

- (a) Set $F(k, \cdot) = \mathcal{H}(k||\cdot)$.
- (b) A CPA-secure encryption scheme follows from a PRF. Here we assume that $|m| = |\mathcal{H}(k)|r$.

 $\begin{array}{lll} \texttt{Gen}(1^n) \colon & \text{output } k \stackrel{\$}{\leftarrow} \mathcal{K} \\ \texttt{Enc}(k,m) \colon & \text{sample random } r \\ & \text{output } c = (r, \mathcal{H}(k||r) \oplus m) \\ \texttt{Dec}(k,c) \colon & \text{compute } \omega = \mathcal{H}(k||r) \text{ and output } \omega \oplus c[2] = m. \end{array}$

(c) A message authentication code also follows from a PRF: $MAC(k, m) = \mathcal{H}(k||m)$.

(d) With (b) and (c), a CCA-secure encryption scheme is given as:

 $\begin{array}{lll} & \operatorname{Gen}(1^n): & \operatorname{output}\, k_c, k_i \stackrel{\$}{\leftarrow} \mathcal{K} \\ & \operatorname{Enc}(k_c,k_i,m): & \operatorname{sample random} r \\ & \operatorname{output}\, c = (r, \mathcal{H}(k_c || r) \oplus m) \text{ and } t = \mathcal{H}(k_i || c[2]) \\ & \operatorname{Dec}(k_c,k_i,c,t): & \operatorname{compute}\, \nu = \mathcal{H}(k_i || c[2]) \\ & \operatorname{if}\, \nu = t, \operatorname{compute}\, \omega = \mathcal{H}(k_c || r) \text{ and output}\, \omega \oplus c[2] = m \\ & \operatorname{else, output}\, \bot. \end{array}$

The keys are named k_c for confidentiality and k_i for integrity.

2.4 Example: Domain Extension

Suppose you are given a MAC scheme with message space $\{0, 1\}^{128}$ that generates a MAC in $\{0, 1\}^{128}$. Show how you can convert this MAC scheme into one with message space $\{0, 1\}^{256}$, while maintaining security. *hint: You can think of the* MAC *as being a* PRF

Solution: The new MAC will have 2 MAC keys (k, k'). To MAC a message (m_1, m_2) compute $t_1 = MAC(k, m_1)$ then compute $t_2 = MAC(k, t_1 \oplus m_2)$ and outputs $MAC(k', t_2)$

3 References

Number theory handout: https://crypto.stanford.edu/ dabo/cs255/handouts/numth1.pdf 6.857 past quizzes