# Recitation 4: Number theory review and practice problems 

6.5610, Spring 2023

March 3, 2023

## 1 Number theory

### 1.1 Basic stuff

- We'll be going over some number theory, specifically related to groups with modulus. These groups have some (believed to be) hard problems and some easy problems that are useful in Diffie-Hellman key exchange, ElGamal encryption, RSA encryption, and more.
- For a prime $p$, let $Z_{p}=\{0,1,2, \ldots, p-1\}$. We can add and multiply elements modulo $p$.
- Fermat's theorem says that for any $x \in Z_{p}^{*}$ we have: $x^{p-1}=1 \bmod p$.

Example: for $p=5,3^{4}=81=1 \bmod 5$

- The inverse of $x \in Z_{p}$ is an element $a$ such that $a \cdot x=1 \bmod p$. The inverse of $x$ modulo $p$ is denoted by $x^{-1}$.
Example: $3^{-1} \bmod 5=2$ since $2 \cdot 3=6=1 \bmod 5$
- $Z_{p}^{*}=\{1,2, \ldots, p-1\}$, the set of invertible elements in $Z_{p}$.


### 1.2 Structure of $Z_{p}^{*}$

- $Z_{p}^{*}$ is a cyclic group. In other words, there exists a generator $g$ such that $Z_{p}^{*}=\left\{1, g, g^{2}, \ldots, g^{p-2}\right\}$. Example: in $Z_{7}^{*}, 3$ is a generator because $\left\{1,3,3^{2}, \ldots, 3^{5}\right\}=\{1,3,2,6,4,5\} \bmod 7=Z_{7}^{*}$
- Not every element of $Z_{p}^{*}$ is a generator.

Example: 2 is not a generator for $Z_{7}^{*}$ because $\left\{1,2,2^{2}, 2^{3}\right\}=\{1,2,4,1\} \bmod 7$, and this cycle will loop and it will not reach all the elements of $Z_{7}^{*}$.

- The order of an element $g \in Z_{p}^{*}$ is the smallest positive integer $a$ such that $g^{a}=1 \bmod p$. The order of $g \in Z_{p}^{*}$ is denoted by $\operatorname{ord}_{p}(g)$.
Example: $\operatorname{ord}_{7}(3)=6$ and $\operatorname{ord}_{7}(2)=3$.
- Lagrange's theorem says that for all $g \in Z_{p}^{*}$ we have that $\operatorname{ord}_{p}(g)$ divides $p-1$.


### 1.3 Quadratic residues

- Quadratic residues are a subgroup of $Z_{p}^{*}$.
- The square root of $x \in Z_{p}$ is a number $y \in Z_{p}$ such that $y^{2}=x \bmod p$
- Example: $\sqrt{2} \bmod 7=3$ because $3^{2}=2(\bmod 7)$.
$-\sqrt{3} \bmod 7$ does not exist.
- An element $x \in Z_{p}^{*}$ is a quadratic residue if it has a square root in $Z_{p}$.
- How do we test whether an element is a quadratic residue?
- The Legendre symbol for an element $x \in Z_{p}^{*}$ is defined as

$$
\left(\frac{x}{p}\right)= \begin{cases}1 & \text { if } x \text { is a QR in } Z_{p}  \tag{1}\\ 2 & \text { if } x \text { is not a QR in } Z_{p} \\ 0 & \text { if } x=0 \bmod p\end{cases}
$$

- By Euler's theorem, $\left(\frac{x}{p}\right)=x^{\frac{p-1}{2}} \bmod p$, so the Legendre symbol can be efficiently computed.
- Let $g$ be a generator of $Z_{p}^{*}$. $x$ is a quadratic residue if it's discrete log with respect to $g$ is even. That is, for $y$ such that $g^{y}=x, y=2 k$ for some integer $k$
- So if $x$ is a quadratic residue, $x^{\frac{p-1}{2}}=g^{2 k \frac{p-1}{2}}=g^{k(p-1)}=1(\bmod p)$


### 1.4 Easy and hard problems

- An easy problem is one that can be solved in time polynomial to the length of the input. Easy problems in $Z_{p}^{*}$ :
- Adding and multiplying elements.
- Computing $g^{r}$, even if $r$ is large (using repeated squaring).
- Inverting an element.
- Testing if an element is a QR or not.
- Believed to be hard in $Z_{p}^{*}$ :
- Discrete log problem.
- Computational Diffie Hellman (CDH) problem.


### 1.5 Exercises

1. Let $p=2 q+1$ be a "safe prime" (where $q$ is prime). Clearly any quadratic residue $x=a^{2}(\bmod p)$ is not a generator of $Z_{p}^{*}$, since its powers are also squares. Give a counterexample to the conjecture that any any non-quadratic-residue in $Z_{p}^{*}$ other than 1 is a generator of $Z_{p}^{*}$.

Solution: The possible orders of elements in $Z_{p}^{*}$ are $1,2, q$, and $p-1=2 q$, and there are elements of each such order. The quadratic residues are 1 and those elements of order $q$. The element of order 2 (i.e. -1 ) will not be a generator of $Z_{p}^{*}$. Thus, -1 is a counterexample, since it only generates $\{-1,1\}$.
2. Argue that if $g$ is a generator of $Z_{p}^{*}$, where $p$ is prime, and if $k$ is relatively prime to $p-1$, then $g^{k}$ is also a generator of $Z_{p}^{*}$.

Solution: Note that $g$ has order $p-1$, and that $k$ has an inverse $\ell$ modulo $p-1$, so that $\left(g^{k}\right)^{\ell}=g$, and powers of $g^{k}$ are just powers of $g$, since $\left(g^{k}\right)^{\ell t}=\left(g^{k \ell}\right)^{t}=g^{t}$; thus powers of $g^{k}$ include all powers of $g$.
3. Consider the Diffie-Helman key exchange protocol over the group $G=Z_{p}^{*}$, where $p$ is a large prime number (say a 2048 -bit prime), and where $g$ is a generator of $Z_{p}^{*}$. Alice sends $g^{a} \bmod p$ and Bob sends $g^{b} \bmod p$, where $a, b$ are random in $\{1, \ldots, p-1\}$. The secret is $K=g^{a b} \bmod p$. Does this scheme have strong security? Namely, is $K$ indistinguishable from a random element in $Z_{p}^{*}$ given $g^{a} \bmod p$ and $g^{b} \bmod p$ ?

Solution: No. For example if one of the messages is a QR (quadratic residue) then the key must be a QR. (This was in lecture as well)

## 2 Practice problems

### 2.1 Example: Weak SPA security.

Define "weak CPA security" (WCPA) of a conventional (non-public-key) encryption scheme Enc $(k, \cdot)$ as for CPA security, except that the Challenger can only ask for the encryption of random messages. That is, the Challenger may ask for, and receive, pairs of the form $(r, \operatorname{Enc}(k, r))$ where $r$ has been uniformly and randomly chosen. Argue that an encryption scheme may be WCPA secure but not CPA secure.

Solution: Suppose that Enc has the property that feeding it a message of 0 gives the key $k$ as output, but is otherwise CPA secure if the message 0 is never input. This scheme is WCPA secure but not CPA secure, since the CPA Challenger could ask for an encryption of 0 .

### 2.2 Example: Block cipher.

Let $\operatorname{Enc}(k, m)$ denote a given block cipher that takes as input an $n$-bit key $k$ and an $n$-bit message block $m$, and returns an $n$-bit ciphertext block $c=\operatorname{Enc}(k, m)$. In this problem you may assume that Enc is an ideal block cipher.

Define a new block cipher Enc ${ }^{\prime}\left(\left(k_{1}, k_{2}\right), m\right)$ in terms of Enc as follows. The block cipher Enc' takes as input a key $k$ consisting of two $n$-bit key-parts $k_{1}$ and $k_{2}$, and an $n$-bit message block $m$, and returns the $2 n$-bit ciphertext block

$$
c=\left(c_{1}, c_{2}\right)=\operatorname{Enc}^{\prime}\left(\left(k_{1}, k_{2}\right), m\right)=\operatorname{Enc}\left(k_{1}, r\right) \| \operatorname{Enc}\left(k_{2}, s\right)
$$

where $r$ and $s$ are random values that add to $m$ modulo $2^{n}$. That is, the result is the concatenation of the encryption of a random $n$-bit value $r$ under Enc using key $k_{1}$ and the encryption of $s=m-r$ under Enc using key $k_{2}$. Arithmetic is modulo $2^{n}$, so that $r+s=m\left(\bmod 2^{n}\right)$.
(a) Is Enc' a CPA-secure block cipher? Explain.

Solution: Yes. $\operatorname{Enc}\left(k_{1}, r\right)$ and $\operatorname{Enc}\left(k_{2}, s\right)$ are essentially fresh random values that say nothing about $m$.
(b) Is Enc' a CCA-secure block cipher? Explain.

Solution: No. The challenger, before receiving an encryption ( $c_{1}, c_{2}$ ) of an unknown message $m$, can obtain an encryption $\left(c_{1}^{\prime}, c_{2}^{\prime}\right)$ of the message 0 . The decryption oracle will allow the challenger to decrypt the ciphertext $\left(c_{1}, c_{2}^{\prime}\right)$ (yielding $m_{1}$ ), and the ciphertext $\left(c_{1}^{\prime}, c_{2}\right)$ (yielding $m_{2}$ ). The sum $m_{1}+m_{2}\left(\bmod 2^{n}\right)$ is equal to the target message $m$. We can ignore the negligible chance that $\left(c_{1}, c_{2}\right)$ is equal to either of $\left(c_{1}, c_{2}^{\prime}\right)$ or $\left(c_{1}^{\prime}, c_{2}\right)$.

### 2.3 Example: Symmetric cryptography in the random oracle model.

Suppose you are in a world in which there is access to a random oracle $\mathcal{H}$. With no other assumptions, which of the following can you construct? For each, either give your construction or argue why it cannot be constructed from $\mathcal{H}$. (Tip: pay careful attention to the use of any keys.)
(a) A pseudo-random function $F(k, \cdot)$.
(b) A CPA-secure symmetric encryption scheme.
(c) A secure message authentication code.
(d) A CCA-secure symmetric encryption scheme.

Solution: They can all be constructed! Access to $\mathcal{H}$ is very powerful since it true randomness, and therefore it is pseudo-random, one-way, and collision resistant. Consider the following:
(a) $\operatorname{Set} F(k, \cdot)=\mathcal{H}(k \| \cdot)$.
(b) A CPA-secure encryption scheme follows from a PRF. Here we assume that $|m|=\mid \mathcal{H}(k| | r)$.

$$
\begin{array}{ll}
\operatorname{Gen}\left(1^{n}\right): & \text { output } k \stackrel{\$ \mathcal{K}}{\leftarrow} \\
\operatorname{Enc}(k, m): & \text { sample random } r \\
& \text { output } c=(r, \mathcal{H}(k \| r) \oplus m) \\
\operatorname{Dec}(k, c): & \text { compute } \omega=\mathcal{H}(k \| r) \text { and output } \omega \oplus c[2]=m
\end{array}
$$

(c) A message authentication code also follows from a $\operatorname{PRF}: \operatorname{MAC}(k, m)=\mathcal{H}(k \| m)$.
(d) With (b) and (c), a CCA-secure encryption scheme is given as:

$$
\begin{array}{ll}
\operatorname{Gen}\left(1^{n}\right): & \text { output } k_{c}, k_{i} \stackrel{\$ \mathcal{K}}{\leftarrow} \\
\operatorname{Enc}\left(k_{c}, k_{i}, m\right): & \text { sample random } r \\
\operatorname{Dec}\left(k_{c}, k_{i}, c, t\right): & \text { output } c=\left(r, \mathcal{H}\left(k_{c} \| r\right) \oplus m\right) \text { and } t=\mathcal{H}\left(k_{i} \| c[2]\right) \\
& \text { compute } \nu=\mathcal{H}\left(k_{i} \| c[2]\right) \\
& \text { if } \nu=t, \text { compute } \omega=\mathcal{H}\left(k_{c} \| r\right) \text { and output } \omega \oplus c[2]=m \\
& \text { else, output } \perp .
\end{array}
$$

The keys are named $k_{c}$ for confidentiality and $k_{i}$ for integrity.

### 2.4 Example: Domain Extension

Suppose you are given a MAC scheme with message space $\{0,1\}^{128}$ that generates a MAC in $\{0,1\}^{128}$. Show how you can convert this MAC scheme into one with message space $\{0,1\}^{256}$, while maintaining security. hint: You can think of the MAC as being a PRF

Solution: The new MAC will have 2 MAC keys $\left(k, k^{\prime}\right)$. To MAC a message ( $m_{1}, m_{2}$ ) compute $t_{1}=$ $M A C\left(k, m_{1}\right)$ then compute $t_{2}=M A C\left(k, t_{1} \oplus m_{2}\right)$ and outputs $M A C\left(k^{\prime}, t_{2}\right)$

## 3 References

Number theory handout: https://crypto.stanford.edu/ dabo/cs255/handouts/numth1.pdf 6.857 past quizzes

