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The plan today is to revisit each of the topics that we covered in
the course, and to look at a few of the open research problems in
each area. My goals today are to (1) entertain you and (2) convince
you that cryptography is one of the most exciting research areas in
computer science.

One-way functions, PRGs, PRFs, etc.
One surprise is that it is possible to
construct information-theoretically
secure one-time MACs with short keys.
This construction, due to Wegman and
Carter [6], inspired the “Galois MAC”
that AES-GCM uses.

We began the class by looking at the one-time pad, a “perfectly se-
cure” one-time cryptosystem, in Shannon’s information-theoretic
sense. As we saw, the one-time pad—and any perfectly secure one-
time encryption scheme—requires a key as long as the message.

The revolutionary idea is to base the security of cryptosystems on
the conjectured hardness of some computational problem. While Early cryptographers never (as far as I

know) based the security of their cryp-
tosystems on explicit computational
assumptions.

cryptographers had implicitly used this idea for centuries, it was not
until the field of computational complexity developed—along with
the notions of the complexity classes P, NP, etc.—that we could give
clean formalizations of these notions. In Shannon’s era, we essentially classi-

fied computational problem as “com-
putable” (e.g., factoring) or “not com-
putable” (e.g., the Halting problem).
It makes sense, then, that Shannon’s
notion of security for a cryptosystem
required security in the face of an
adversary who could compute any
computable function.

Towards constructing encryption systems with short keys, we
defined one-way functions, pseudorandom functions (PRF), pseudo-
random permutations (PRP), and pseudorandom generators (PRG).
There are a number of deep open questions even about these simple
objects. Let me mention just a few, in decreasing order of depth.

Do one-way functions exist?

Most of us believe one-way functions exist, even if we have no idea
how to prove it. Recall that

(P = NP)⇒6 ∃OWF therefore ∃OWF⇒ (P 6= NP).

Even if P 6= NP, proving that one-way functions exists requires show-
ing something much stronger. More specifically, P 6= NP only implies Russell Impagliazzo [5] has a really nice

paper on these relationships.that there exist hard instances of certain computational problems
(e.g., 3SAT). But to construct a one-way function, we need to come up
with a computational problem that is hard on most inputs (i.e., “hard
on average”) and for which we can efficiently sample an instance
along with its “solution.” Think of the pair (x, f (x)), for a one-

way function f , as a solution-problem
pair.

Since I do not expect to see a resolution to the P-versus-NP prob-
lem any time soon, I really have no hope of seeing a proof that one-
way functions exist unconditionally. The strange thing, of course, is
that it seems very easy to construct one-way functions: If you cook
up any crazy function on n bits, for n large enough, there is a good
chance that it will be hard to invert on random inputs. (But if you
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have learned anything in this course, I hope that you have learned to
not try to cook up your own one-way functions.)

Can we build key exchange from one-way functions?

Another one of the famous open problems in cryptography, that also
seems very difficult to solve, is to construct a key-exchange protocol
from any one-way function. That is, if I give you a circuit imple-
menting an arbitrary one-way function can you use that circuit to
construct a key-exchange protocol that is secure if the underlying
one-way function is?

As we have seen in this course, we know how to construct key-
exchange protocols from the hardness of the Computational Diffie-
Hellman problem, RSA, factoring, LWE, and many other assump-
tions. But can we construct a key-exchange protocol whose security is
based only on the hardness of inverting a one-way hash function? As I mentioned at the start of the

course, Ralph Merkle was an undergrad
when he defined the notion of public
key exchange and constructed this
protocol.

Lest you think that this is a totally absurd idea, let me present
Ralph Merkle’s key-exchange protocol based on hash functions. The
catch is that Merkle’s protocol runs in time O(n) for the honest par-
ties and the best attack runs in time O(n2), on security parameter n. In contrast, the best attack on standard

Diffie-Hellman key exchange in elliptic-
curve groups runs in exponential time,
roughly 2n/2.Setup. Alice and Bob share a public hash function H : [n2] → [n10],

which we model as a random oracle. We use the convenient notation [x] =
{1, . . . , x}.

Merkle’s Key-Exchange Protocol.

1. Alice picks n numbers a1, . . . , an ←R [n2].
She sends H(a1), . . . , H(an) to Bob.

2. Bob picks n numbers b1, . . . , bn ←R [n2].
He sends H(b1), . . . , H(bn) to Alice.

3. Alice and Bob find the least i, j ∈ [n] such that

H(ai) = H(bj).

(If no such pair exists, restart the protocol.) They use k = ai = bj as
their shared secret. Actually, they would hash k with an

independent hash function and use the
result as their shared secret.

Correctness. By the Birthday Paradox, Alice and Bob will agree on
a shared secret with good probability: they are each sampling n
numbers from {1, . . . , n2}.

Security. We will not make the argument formal, but we can indeed
prove security if we model the hash function H as a random oracle.
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In particular, any attacker that makes o(n2) queries to the hash func-
tion H has a negligible chance of recovering Alice and Bob’s shared
secret.

It is not possible to build a better-than-Merkle key-exchange proto-
col from just a random oracle [1]. But it could be possible to build a
key-exchange protocol that makes “non-black-box” use of a one-way
function (doesn’t just treat the one-way function as a black box but
somehow exploits its representation of a circuit, etc.) Such a construc-
tion would have to be clever in new ways.

Are there better algorithms for function inversion with preprocessing?

Another one of my favorite open questions has to do with preprocess-
ing attacks on one-way functions. This problem still seems hard, but I
can believe that a mere moral can solve it. (The first two problems, on
the other hand. . . )

In function inversion with preprocessing, there is an attacker who
is trying to invert a function f : [N] → [N]. Think of f as as the
function:

fAES(k) := AES(k, 00000).

So, given just the encryption of all zeros under a secret AES key k,
your task is to recover k. If we are given only oracle access to f —i.e.,
we only get to evaluate f (·) in the forward direction and not inspect
its representation as a circuit—the best function-inversion algorithm
is brute-force search: try all N = 2128 AES keys and see which one
works. Martin Hellman [3] first discussed this

type of preprocessing attack, in the
context of the DES block cipher.

However, it might be the case that our attacker wants to invert f
many times on many independent inputs: a powerful government
might want to perform AES key recovery many many times. In ad-
dition, the attacker might be willing to perform a gigantic amount of
precomputation to produce a data structure to make the inversion task
easier.

The picture looks like this:

𝑆 bits

Online 
algorithm 𝒜!

𝑓: 𝑁 → 𝑁

𝑦 = 𝑓(𝑥)

𝑥" 𝑓(𝑥")
𝑻 queries

Preprocessing 
algorithm 𝒜# 𝑥$ ∈ 𝑓%! (𝑦)

This figure is from a talk given by
Dima Kogan on our work on function
inversion [2].Now we measure the cost of a function-inversion algorithm by two

quantities:



open questions 5

• the time—the number of times the adversary evaluates the
function f , and

• the space—the size of the adversary’s precomputed data
structure.

The main question in this area is: what is the best achievable
trade-off between the space usage S and running time T?

A few points on the trade-off curve are immediate:

• Brute-force search: time T = N, space S = 0.

• Precompute f−1 for all possible inputs: time T = 0, space
S ≈ N.

A good puzzle is to try to come up with an algorithm that achieves
S = T = o(N). Recall that a function t(N) is o(N) if

t(N)/N → 0 as N → ∞.Hellman gave a very surprising algorithm that achieves S = T =

N2/3 polylog(N). Since Hellman’s algorithm only needs to evaluate f
in the forward direction, it can invert any function f ! So it is quite a
general result.

[Draw picture of Hellman’s algorithm for permutations.]

But are better-than-Hellman preprocessing algorithms possible? Constructing the data structure would
take an epic amount of computation,
so it’s still not clear that this would
have any meaningful real-world conse-
quences for AES.

We know that there is no function-inversion algorithm that simul-
taneously uses less than N1/2 time and N1/2 space. But we have no
algorithm that achieves S = T = N1/2 either. This algorithm would
be particularly interesting in the context of AES, since it would give a
data structure of size roughly 264 that an attacker could use to break
AES in time roughly 264.

Identification protocols and signature schemes

In the second part of the course, we covered authentication schemes
and digital signatures. Let me mention a few interesting open re-
search directions here.

Is there a human-computable many-time-secure authentication protocol?

Say that you get stuck in the dessert in some faraway country hun-
dreds of miles away from the nearest ATM. (This actually happened
to me one time.) You call your parents and ask them to wire you $100

via Western Union—which to my surprise works even in places with-
out ATMs. But since your parents are cryptographers, they they want
to authenticate you first.

In particular, you share a secret key k with your parents. They
will read you a challenge message over the phone and you have to
respond, using only a paper and pencil. We want many-time security
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against eavesdropping attacks: even if an attacker listens to many
interactions between you and your parents, she shouldn’t be able to
impersonate you. If you had a PRF F, it would be easy

to construct such an authentication
protocol: your parents send a nonce r,
you reply with a ← F(k, r), and your
parents check that a = F(k, r). So an
equivalent question is whether it is
possible to construct a PRF (or even a
weak variant of a PRF) that a human
can compute.

The question, which I suspect Manuel Blum first posed, is whether
it is possible to construct an authentication scheme that a human can
implement with paper and pencil. What I like about this question is
that it first requires you to understand what humans can and cannot
compute. Just as we cannot talk about one-way functions without
having good models of machine computation, we cannot hope to talk
about human-computable one-way functions without having a good
model of human computation.

Nick Hopper and Manuel Blum [4] came up with a very simple
protocol that is plausibly human computable, and is based on the
(very solid) learning-parities-with-noise assumption (LPN).

Hopper-Blum authentication protocol. The two parties shared secret is
a vector k ∈ Zn

2 . Think of n ≈ 4 096 or so.

• Challenge. The challenge is a random vector r ←R Zn
2 .

• Response. The response is the value

a← 〈k, r〉+ ε ∈ Z2,

where 〈k, r〉 = ∑n
i=1 ki · ri ∈ Z2, and ε ∈ {0, 1} is a biased coin

that is 1 with probability 1/10.

• Accept/reject. The verifier accepts if a = 〈k, r〉 ∈ Z2.

If the verifier runs the protocol 1 000 times and accepts if and only
if the prover (person authenticating) gives the correct answer at least
80% of the time, then the verifier can be pretty sure that they are
talking to the right person.

Is this protocol really human computable? What would a better
protocol look like? And what does it mean for a function to be “hu-
man computable” or not?

Short signatures

A very simple open problem is: Are there digital signature schemes
(under plausible assumptions) in which the signatures are λ bits long
and the best forgery attack runs in time very close to 2λ? We have
signatures from pairings/bilinear maps that have bitlength roughly
2λ that achieve λ-bit security, but getting even shorter signatures
would be very useful. ECDSA signatures are closer to 3λ bits long, or
roughly 384 bits when we are aiming for 128-bit security.
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Is the RSA problem as hard as factoring?

Recall that the RSA problem is the problem of taking cube roots
modulo the product of two large primes (such that 3 does not divide
p− 1). Is breaking RSA as hard as factoring? In other words: if I give
you an efficient algorithm A for solving the RSA problem, can you
use A to factor the modulus?

Since RSA is going out of style, I am not sure that anyone is work-
ing very actively on this sort of problem. The fact that computing square roots is

as hard as factoring is actually based on
the identity that you may have learned
in high school: x2 − y2 = (x + y)(x− y).

We know that taking square roots modulo a composite is as hard
as factoring, but for cube roots, and for many other related computa-
tional problems modulo composites, we have no idea.

How hard really is factoring?

This talk of RSA reminds me of one of the most basic open questions
in computational number theory: how hard is factoring? Is there
a polynomial-time algorithm for it? The best algorithms today for
factoring an n-bit number run in time roughly 2

3√n, which is much
much better than 2n, but is much worse than n100, since the exponent
grows without bound. It seems unlikely that 2

3√n is the correct run-
ning time for the best factoring algorithm in any just world, but the
standard tricks cannot do better than that.

Post-quantum signatures

We mentioned a few times over the course of the semester that NIST
is in the middle of standardizing a new suite of cryptographic algo-
rithms that are plausibly resistant to attack by quantum computers.
Many of the algorithms are either based on hash functions or on
lattice problems, similar to the learning-with-errors problem we dis-
cussed in the last lecture.

One of the most practically relevant open questions in that area
is: can we construct a plausibly post-quantum-secure key-exchange
scheme whose communication cost matches that of the Diffie-Hellman
protocol. The learning-with-errors-based schemes have much much
higher communication costs: the public keys can be megabytes in
size, versus 32 bytes for an elliptic-curve Diffie-Hellman public key.

To give a sense of why we need new algorithms in the post-
quantum era, let me sketch the two most important results in quan-
tum cryptanalysis:

Grover search. Grover’s algorithm solves the following problem:

• Given: Oracle access to f : [N]→ {0, 1}.

• Find: An x∗ ∈ [N] such that f (x∗) = 1.
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A classical computer requires Ω(N) queries to f to solve this problem—
again assuming that the computer just evaluates f in the forward
direction. Grover’s result is that a quantum computer can solve this
problem using just O(

√
N) queries to f . So, breaking the AES-128

block cipher on a quantum computer would potentially take only
time ≈ 264.

Notice though that Grover’s algorithm only gives a polynomial
speedup over a classical algorithm. So the 2t-time classical algorithm
becomes a 2t/2-time quantum algorithm. To defend, say, AES against
Grover search, we just need to double the lengths of our secret keys.

Shor’s algorithm. Shor’s algorithm, building on an earlier algorithm
due to Simon, solves the following problem (“order finding”):

• Given: Oracle access to f : [N]→ [N].

• Find: A non-zero ∆ ∈ [N] such that f (x) = f (x + ∆).

On a classical computer, the best algorithm that makes black-box use
of f makes at least Ω(N) queries to f . The shock of Shor’s algorithm
is that it solves this problem on a quantum computer using only
polylog(N) queries to the function f . Furthermore, it gives quantum
polynomial time algorithms for both of the widely used hardness
assumptions: factoring and discrete log. I will say a few words about the fallout

if I have time.Like Grover’s algorithm, Shor’s algorithm works for any function
f , so it is extremely general. In particular, it gives a quantum polyno-
mial time attack on discrete log in every group.

The next question is how we use Shor’s algorithm to break cryp-
tosystems.

• Discrete log. Given a group G = {g, g2, g3, . . . , gq} of prime
order q, and an instance R = gr ∈ G, we want to find x ∈ Zq.
Define the function

Fg,R(x, y) := gxRy ∈ G.

Shor’s algorithm gives us back non-zero (∆x, ∆y) ∈ Z2
q such

that We are eliding many details here – we
need ∆y 6= 0 in particular.

gxRy = gx+∆x Ry+∆y ∈ G

gxgry = gx+∆x gry+r∆y ∈ G

x + ry = x + ∆x + ry + r∆y ∈ Zq

0 = ∆x + r∆y ∈ Zq,

and then we have that r = −∆x/∆y ∈ Zq. Here 1/∆y ∈ Zq denotes the unique
ŷ ∈ Zq such that yŷ = 1 ∈ Zq.

• Factoring. Given a number N = pq, for primes p and q, our
task is to factor N. Define the function:

FN(x) := ax mod N,
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where a ∈ ZN is just a random value we pick and fix before
we run the algorithm. When working modulo a prime p, we
have that

ax+(p−1) = ax(ap−1) = ax mod p,

where ap−1 = 1 mod p by Fermat’s Little Theorem. When In other words, the group Z∗p has
order p− 1. The group Z∗N has order
φ(N) = (p− 1)(q− 1).

the modulus N = pq is composite, the generalization of this
rule is:

ax+(p−1)(q−1) = ax mod pq.

The quantity φ(N) = (p− 1)(q− 1) is called “Euler’s totient
function,” and gives the order of the group of Z∗N when N is
the product of two primes. (There are generalizations to all
composites.)

Now, if we run Shor’s algorithm on FN(·), it will give us back
a non-zero integer ∆ such that We could also get a multiple of φ(N),

but that is just as good for the purposes
of factoring.ax = ax+∆ mod N.

By the discussion that we just had, ∆ = φ(N) = (p− 1)(q−
1).

To factor N given φ(N), we first recover p + q as:

φ(N) = pq− p− q + 1

N − φ(N)− 1 = p + q.

Now, define the polynomial over the integers:

Q(x) := x2 − (p + q) + N.

This polynomial has two roots over the integers: p and q.
Finding roots of polynomials over the integers is easy, so we
are done.

Building a quantum computer large enough to run either of these
algorithms seems very challenging. Depending on who you ask, it is
either a mere engineering task or fundamentally impossible. Govern-
ments worry about quantum cryptanalysis because an attacker who
intercepts your traffic today can potentially decrypt it 50 years from
now using a quantum computer. So it’s important to “future proof”
your cryptosystems for this reason.

Secure computation

The first two thirds of this class focused on how to protect infor-
mation in transit. At this point, we have very solid techniques for
encrypting and authenticating data as it flows over a network.
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But protecting data in transit only solves part of the problem: To-
day, it’s possible to build a strong encrypted pipe between your com-
puter and Google’s servers, but if you still send all of your sensitive
to Google, we still have a serious security/privacy problem.

In the last portion of this class, we discussed techniques for se-
curing computation: fully homomorphic encryption, delegation of
computation, etc. The state of the art in these flavors of secure com-
putation is pretty pitiful, compared to the state of the art in transport
encryption.

A few of the problems in this area that I think are most interesting:

• Can you search for something on Google without Google
seeing what you’re Googling for?

• Can you browse the web without anyone knowing what
pages you’re browsing to?

• Can you build a trustworthy computer from untrustworthy
components?

What next?

• Attend seminars. We have a weekly Cryptography and In-
formation Security seminar, a weekly security seminar, and
the quarterly Charles River Crypto Day. All are free to attend
and open to the public. Most of these events appear on the
CSAIL calendar.

• Take classes. Related classes at MIT are 6.858 (Spring) and
6.875 (Fall). Yael is teaching a class on proof systems in the
fall as well—course number TBD. There are many classes at
Harvard relating to privacy, law, cryptography, etc. You can
cross-register for these for free!

• Get involved in research. For undergraduates: UROPs are a
great way to get started, if you haven’t tried them already. If
you have done a great project in this class, you can share it
with your prospective research advisor. The Cryptography
ePrint Archive is a place to get the latest research papers in
cryptography (for free!).

Closing notes

There are two major themes that have come up again and again in
the course this semester.

• The first is the importance of precisely defining your security
goal. What does it mean for your system to be “secure?”
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Against which class of attackers is your system trying to
defend? Many of the great innovations in cryptography in
the last fifty years have come from thinking through this
type of question: the definitions of semantic security, zero
knowledge, interactive proofs, digital signatures, and so on.

Many of the most severe security failures come from not hav-
ing thought through these questions carefully. If you don’t
even know what it means for your system to be “secure,”
how can it possibly be?

• The second is that it’s often possible to overcome impossibil-
ity. Almost everything in cryptography seems impossible at
first glance:

– It’s impossible to construct a perfectly secure encryp-
tion system with a short key.

– It’s impossible to agree on a shared secret without a
secret channel.

– It’s impossible to give someone the solution to a
problem without revealing the solution to them.

– It’s impossible to compute on data without seeing it.

And yet, we have seen again that—with clever ideas and the
computational assumptions—all of these things are possible!

I hope that you take these two lessons away with you from this
course:

1. If you don’t know what X means, it’s hard to achieve X. In this
class X = security, but later on it might be that X = success or
X = fulfillment, or X = happiness}. I think the same lesson
applies.

2. It is surprisingly often possible, with enough creativity, to over-
come barriers. Cryptography is all about turning failures (e.g., our
inability to find good factoring algorithms) into success (encryp-
tion, signatures, and much more). Maybe the same principle will
apply in your life?

Feel free to email me or Yael any time if you have questions about
cryptography or anything else. We do not always have capacity to
take on UROP/MEng projects, but we’re always happy to brainstorm
about research ideas and chat about whatever else is on your mind.

Have a great summer!
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