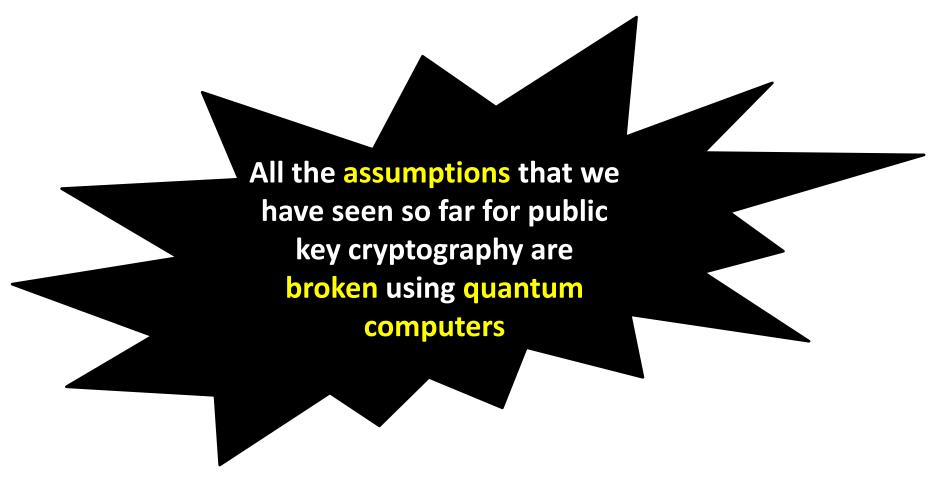
Fully Homomorphic Encryption and Post Quantum Cryptography

6.5610

Post Quantum Cryptography



Factoring, RSA, Discrete Log, Elliptic Curves...

Is Crypto Going to Die??

- There is a family of assumptions that are believed to resist quantum attacks.
- We know how to **build crypto-systems** from these assumptions.

Today

1. Define Learning with Error (LWE) assumption, which is believed to be post-quantum secure

2. Fully Homomorphic Encryption (FHE)

- Definition
- Application
- Construction from LWE

Learning with Error (LWE)

[Regev 2004]

LWE assumption: It is hard to solve random noisy linear equations

Note: It is easy to solve linear equations without noise (Gaussian Elimination)

Learning with Error (LWE)

[Regev 2004]

Formally: LWE is associated with parameters (q, n, m, χ)

```
q = \text{field size (prime)}
n = \# \text{ variables}
m = \# \text{ equations } (m \gg n)
\chi = \text{error distribution}
```

 $LWE_{q,n,m,\chi}$: For random $s \leftarrow Z_q^n$, random $A \leftarrow Z_q^{n \times m}$, and $e \leftarrow \chi^m$, $(A, sA + e) \approx (A, U)$

$$LWE_{q,n,m,\chi}$$
: For random $s \leftarrow Z_q^n$, random $A \leftarrow Z_q^{n \times m}$, and $e \leftarrow \chi^m$,
$$(A, sA + e) \approx (A, U)$$

- 1. Believed to resist quantum attacks.
- 2. No known sub-exponential algorithms.
- 3. Reduces to worst-case lattice assumptions
- 4. Resilient to leakage
- 5. We can construct amazing cryptographic primitives from it, such as **fully homomorphic encryption**!

Fully Homomorphic Encryption

Notion suggested by Rivest-Adleman-Dertouzos in 1978:

$$Enc(pk,x), Enc(pk,y)$$
 $\stackrel{\text{easy}}{\longrightarrow}$
 $Enc(pk,x+y)$
 $Enc(pk,x), Enc(pk,y)$
 $\stackrel{\text{easy}}{\longrightarrow}$
 $Enc(pk,x+y)$

Addition and multiplication mod 2 are complete

$$Enc(pk, x) \xrightarrow{easy} Enc(pk, f(x))$$

Fully Homomorphic Encryption

Notion suggested by Rivest-Adleman-Dertouzos in 1978:

$$Enc(pk,x), Enc(pk,y)$$
 $\stackrel{\text{easy}}{\longrightarrow}$
 $Enc(pk,x+y)$
 $Enc(pk,x), Enc(pk,y)$
 $\stackrel{\text{easy}}{\longrightarrow}$
 $Enc(pk,x+y)$

 Note: RSA and El-Gamal are homomorphic w.r.t. multiplication, but not addition:

RSA:
$$x^e \mod n, \ y^e \mod n$$
 $(xy)^e \mod n$

El-Gamal: $(g^{r_1}, g^{r_1s} \cdot x), \ (g^{r_2}, g^{r_2s} \cdot y)$ $(g^{r_1+r_2}, g^{(r_1+r_2)s} \cdot xy)$

Fully Homomorphic Encryption

Notion suggested by Rivest-Adleman-Dertouzos in 1978:

$$Enc(pk,x), Enc(pk,y)$$
 $\stackrel{\text{easy}}{\longrightarrow}$
 $Enc(pk,x+y)$
 $Enc(pk,x), Enc(pk,y)$
 $\stackrel{\text{easy}}{\longrightarrow}$
 $Enc(pk,x+y)$

- First construction by Gentry 2007 (lattice based).
- First construction under LWE by Brakerski and Vaikuntanathan 2011.
- Today: We will see construction by Gentry-Sahai-Waters 2013

Applications of FHE: Private Delegation

- Suppose we want to delegate our computation (say to the cloud)
- Suppose we don't want the cloud to know what the computation is.

Can do private delegation using FHE!

Construction

[Gentry-Sahai-Waters13]

Gen(1ⁿ):
$$A \leftarrow Z_q^{(n-1) \times m}$$
 $PK = B = \begin{bmatrix} A \\ sA + e \end{bmatrix} \in Z_q^{n \times m}$ $e \leftarrow \chi^m$ $SK = t = (-s, 1) \in Z_q^n$ $tB \approx 0$

$$Enc(PK, b)$$
: Choose at random $R \leftarrow \{0,1\}^{m \times N}$, output

$$CT = BR + bG \in Z_q^{n \times N}$$

where $G \in \mathbb{Z}_q^{m \times N}$ is a fixed matrix

$$N = n(\log q + 1)$$

$$G = \begin{bmatrix} 124 & \dots & 2^{\log q} \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Construction

[Gentry-Sahai-Waters13]

Gen(1ⁿ):
$$A \leftarrow Z_q^{(n-1) \times m}$$
 $PK = B = \begin{bmatrix} A \\ sA + e \end{bmatrix} \in Z_q^{n \times m}$ $e \leftarrow \chi^m$ $SK = t = (-s, 1) \in Z_q^n$ $tB \approx 0$

$$Enc(PK, b)$$
: Choose at random $R \leftarrow \{0,1\}^{m \times N}$, output

$$\mathbf{CT} = BR + bG \in \mathbb{Z}_q^{n \times N},$$

where $G \in \mathbb{Z}_q^{m \times N}$ is a fixed matrix

$$N = n(\log q + 1)$$

Dec(SK, CT): Compute $t \cdot CT$, and output 0 iff $t \cdot CT \approx 0$.

Correctness: R is small, and $t \cdot G$ is large, hence:

$$t \cdot CT = t \cdot BR + btG \approx 0 + btG$$
.

Construction

[Gentry-Sahai-Waters13]

Gen(1ⁿ):
$$A \leftarrow Z_q^{(n-1) \times m}$$
 $PK = B = \begin{bmatrix} A \\ sA + e \end{bmatrix} \in Z_q^{n \times m}$ $e \leftarrow \chi^m$ $SK = t = (-s, 1) \in Z_q^n$ $tB \approx 0$

$$Enc(PK, b)$$
: Choose at random $R \leftarrow \{0,1\}^{m \times N}$, output

 $\mathbf{CT} = BR + bG \in \mathbb{Z}_q^{n \times N},$

 $N = n(\log q + 1)$

where $G \in \mathbb{Z}_q^{m \times N}$ is a fixed matrix

Security: If B was random in $Z_q^{n \times m}$ then $(B, BR) \equiv (B, U)$ (by the Leftover Hash Lemma, follows from the fact that $m > n \log q$). By LWE, $(B, BR) \approx (B, U)$

Computing on Encrypted Data

$$Enc(PK,b)$$
: Choose at random $\mathbf{R} \leftarrow \{0,1\}^{m \times N}$, output
$$\mathbf{CT} = BR + bG \in \mathbf{Z}_q^{n \times N},$$
 where $G \in \mathbf{Z}_q^{m \times N}$ is a fixed matrix

$$BR_1 + b_1G \quad RR_2 + b_2G$$

$$G^{-1}: Z_q^{n \times N} \rightarrow \{0, 1\}^{N \times N} \text{ is bit decomposition function:}$$

$$\forall M \in Z_q^{n \times N} \quad GG^{-1}(M) = M.$$

$$CT_1, CT_2 \quad \text{easy}$$

$$CT^{\times} = CT_1 \cdot G^{-1}(CT_2) = (BR_1 + b_1G) \cdot G^{-1}(CT_2)$$

$$= BR' + b_1 \cdot CT_2 = B(R' + b_1R_2) + b_1b_2G = BR'' + b_1b_2G$$
Can get addition mod 2 by computing $CT^+ - 2CT^{\times}$

The Error Grows!

$$BR_1 + b_1G$$
, $BR_2 + b_2G$ easy $CT^+ = CT_1 + CT_2 = B(R_1 + R_2) + (b_1 + b_2)G$

$$CT_1$$
, CT_2 $\xrightarrow{\text{easy}}$ $CT^{\times} = CT_1 \cdot G^{-1}(CT_2) = (BR_1 + b_1G) \cdot G^{-1}(CT_2)$
= $BR' + b_1 \cdot CT_2 = B(R' + b_1R_2) + b_1b_2G = BR'' + b_1b_2G$

