This week:

The Evolution of Proofs in Computer Science
Classical proofs

(Zero-knowledge) Interactive proofs

Multi-prover interactive proofs

Probabilistically checkable proofs (PCPs)

Succinct non-interactive arguments (SNARGs)
Zero-Knowledge Proofs
[Goldwasser-Micali-Rackoff85]

Proofs that reveal no information beyond the validity of the statement
Zero-Knowledge Proofs
[Goldwasser-Micali-Rackoff85]

Impossible!

This is information!
Interactive Proofs
[Goldwasser-Micali-Rackoff85]

Completeness: \(\forall x \in L \quad \Pr[(P, V)(x) = 1] \geq 2/3 \)

Soundness: \(\forall x \notin L, \forall P^* \quad \Pr[(P^*, V)(x) = 1] \leq 1/3 \)

Note: By repetition, we can get completeness \(1 - 2^{-k} \) and soundness \(2^{-k} \)
Interactive Proofs

[Goldwasser-Micali-Rackoff85]

For ZK the prover needs to be randomized

[Goldreich-Micali-Wigderson87]: Every statement that has a classical proof has zero-knowledge (ZK) interactive proof, assuming one-way functions exist
Defining Zero-Knowledge

Formally: There exists a PPT algorithm S (called a simulator), such that for every PPT (cheating) verifier V^* and for every $x \in L$:

$$S(x) \approx (P, V^*)(x)$$

Denotes the transcript

This transcript reveals no information
Focus on the NP-complete language of all 3-colorable graphs:

\[G = (Ver, E) \]

Randomly permute the coloring, to obtain valid coloring \((c_1, \ldots, c_n)\)

Choose a random edge \((i, j) \in E\)

Open safes \(i, j\)

Soundness: Only \(1 - \frac{1}{|E|}\) but can be amplified via repetition.
ZK Proofs for NP

Focus on the NP-complete language of all 3-colorable graphs:

\[G = (\text{Ver}, E) \]

\[S(G): \]
1. Choose a random $(i, j) \in E$
2. Choose random distinct colors c_i, c_j
3. The simulated transcript is:

 \[(i, j) \in E \]

 Open safes i, j

For honest V

\[(i, j) \in E \]

Open safes i, j
Implementing Digital Safes: Commitment Scheme

Commitment scheme is a randomized algorithm Com s.t.

• Computationally Hiding:
 \[\forall m, m' \quad Com(m; r) \approx Com(m'; r') \]

• Statistically Binding: \(\mathcal{A}(m, r), (m', r') \) s.t. \(m \neq m' \) and
 \[Com(m; r) = Com(m'; r') \]
Constructing a Commitment Scheme

Construction 1:

Let $f: \{0,1\}^* \rightarrow \{0,1\}^*$ be an injective OWF, and $p: \{0,1\}^* \rightarrow \{0,1\}$ be a corresponding hardcore predicate.

$$\text{Com}(b; r) = (f(r), p(r) \oplus b)$$

Binding: Follows from the fact that f is injective

Hiding: Relies on the fact that if f is one-way then:

$$(f(r), p(r)) \approx (f(r), U)$$
Constructing a Commitment Scheme

Construction 2: computationally hiding, and statistically binding [Pederson]

Let G be a group of prime order p, let $g \in G$ be any generator, and h be a random group element.

$$Com_{g,h}(m, r) = g^m h^r$$

Hiding: Information theoretically!

Binding: Follows from the Discrete Log assumption.
Perfect ZK Computationally Sound Proofs

For the \(NP \)-complete language of all 3-colorable graphs

\[G = (V, E) \]

Randomly permute the coloring, to obtain valid coloring \((c_1, ..., c_n)\)

Choose a random edge \((i, j) \in E\)

Reveal \(c_i, c_j\), with corresponding randomness

\[\text{Com}_{g,h}(c_1), ..., \text{Com}_{g,h}(c_n) \]
So Far...

• Constructed ZK proofs for all of NP
 – using commitment schemes
Interactive Proofs are more efficient!
Classical Proofs

$P \quad V$

Diagram with a box in the middle and arrows pointing from P to V.
Conjecture: There is no succinct classical proof for correctness of any computation $M(x) = 1$ within T steps.
Interactive Proofs are More Efficient!

[Lund-Fortnow-Karloff-Nissan90, Shamir90]

Example: Chess
Interactive Proofs are More Efficient! [Lund-Fortnow-Karloff-Nissan90, Shamir90]

correctness of any computation can be proved:

\[\text{Time to verify} \approx \text{Space required to do the computation} \]

\[\text{Interactive Proof} \]

\[IP = PSPACE \]
Interactive Proofs are More Efficient!

[Lund-Fortnow-Karloff-Nissan90, Shamir90]

correctness of any computation can be proved:

\[
\text{Time to verify} \approx \text{Space required to do the computation}
\]

Succinct space \rightarrow \text{succinct interactive proof}
Interactive Proofs are More Efficient!

[Lund-Fortnow-Karloff-Nissan90, Shamir90]

Fix any language L computable in time T and space S

Runs in time $\approx 2^{S^2}$

P

$x \in L$

V

Runs in time $\approx S \cdot \text{polylog } T$
Open Problem:

Does there exist an interactive proof for any time-T space-S computation where the verifier runs in time $\approx S \cdot \text{polylog}(T)$ and the prover runs in time $\text{poly}(T)$?

Is proving harder than computing??
Open Problem:

$P \in L$

Runs in time $\approx S \cdot \text{polylog}T$

Runs in time $\text{poly}(T)$
Multi-Prover Interactive Proofs

[BenOr-Goldwasser-Kilian-Wigderson88]

\[\forall f \text{ computable in time } T: \]

2-provers can convince verifier that \(f(x) = y \),
where the runtime of the verifier is only \(|x| \cdot \text{polylog}(T) \)
and the communication is \(\text{polylog}(T) \)

\(P_1 \)
\[a_1 \]
\[q_1 \]
\(P_2 \)
\[a_2 \]
\[q_2 \]
\(V \)

motivated by constructing perfect ZK proofs
[Fortnow-Rompel-Sipser88]:

\[V \]

\[q_1 \]

\[q_2 \]

\[a_1 \]

\[a_2 \]

\[P_1 \]

\[P_2 \]

\[a_1 \ a_2 \ a_3 \ a_4 \]

\[a_1 \ a_2 \ a_3 \ a_4 \]
Probabilistically Checkable Proofs

Read only 3 bits of the proof, and obtain soundness 1/8
Classical proofs

(Zero-knowledge) Interactive proofs

Multi-prover interactive proofs

Probabilistically checkable proofs (PCPs)

Succinct non-interactive arguments (SNARGs)
THANK YOU