
Secret Sharing and its Applications
Notes by Henry Corrigan-Gibbs

MIT - 6.5610
Lecture 18 (April 19, 2023)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Outline

• Definition of Secret Sharing

• Additive secret sharing

– Application: Private information retrieval

• Stretch break

• Shamir’s secret-sharing scheme

– Application: Multiparty computation



secret sharing and its applications 2

Secret sharing

Note: This section is drawn in large part from Dima Kogan’s notes from
Stanford’s CS355.

Imagine that you own a jewelry store with a gigantic safe in the
back room. You want to give the code to the safe to your employees
so that if something happens to you, they can open up the safe and
keep the store running.

You have two conflicting goals:

• You want to make sure that your employees really are able to
open the safe, even if some of them don’t show up to work,
forget whatever secret they were supposed to remember,
drop their laptop in the lake, etc.

• You want to make sure that no single rogue employee can
open the safe on their own and take off with the jewels. Equally important: You want to make

sure that no one can coerce a single
employee into opening the safe. People
who handle cryptocurrency secret keys
worry about that threat.

To ensure availability, it seems like you should give the code to
each of your employees. But that is problematic for security, since
any employee can make off with the jewels. Or, you could encrypt
the code in such a way that all of your employees need to participate
to recover it, but that is bad for availability. (If one of them disap-
pears, the rest cannot open the safe.) In the cryptocurrency, we are typically

protecting signing keys, rather than
encryption keys. For that application,
there are special-purpose threshold
signing schemes that require multiple
signers to agree to sign a message be-
fore the group can produce a signature
that validates under the group’s public
key.

Secret-sharing schemes give a very elegant solution to this type of
problem. The goal of a secret-sharing scheme is to split a secret value
k into many shares with two properties:

• Correctness. Anyone who holds at least t shares can recover
the secret k.

• Security. An attacker who sees fewer than some threshold
number of shares t learns no information about the secret k,
and

We use k to denote the secret, since in practice often the secret is the
secret key for another cryptosystem.

Definition

For integers t, n with t ≤ n, a t-out-of-n secret-sharing scheme over a
set Σ is a pair of efficient algorithms (Gen,Recover) with the following
syntax:

• Gen(k) → (s1, . . . , sn) is a randomized algorithm that takes as
input a secret k ∈ Σ and outputs n shares.

• Recover(si1 , . . . , sit) → k takes as input t shares and outputs
the secret k. Without loss of generality, we can

assume that each share includes the
“identity” or index of the share, since
we can append a unique identifier to
each share with only an additional
dlog2 ne bits.

Shamir gave one of the first secret-
sharing schemes in his 1979 paper [5].

The pair (Gen,Recover) must satisfy the following two properties:



secret sharing and its applications 3

Definition 1 (Secret sharing, Correctness). For all k ∈ Σ, for all
(s1, . . . , sn) ← Gen(k), and for all size-t subsets {si1 , . . . , sit} of the
shares, k = Recover(si1 , . . . , sit).

A stronger correctness property would require that the Recover

algorithm outputs the correct secret, even when some of the shares it
is given are corrupted. Standard secret-sharing schemes can satisfy
this stronger notion of correctness; this stronger security property
is useful in many applications. We will not discuss those extensions
here.

The security definition is similar to our notion of one-time security
for a secret-key encryption scheme, or semantic security for a public-
key encryption scheme. The idea is that any size-(t− 1) subset of the
shares should “look the same,” whether they are shares of secret k or
a different secret k′:

Definition 2 (Secret sharing, Security). For all k, k′ ∈ Σ, for all subsets
T ⊂ {1, . . . , n} of size t− 1,

{Gen(k)[T]} ≈c {Gen(k′)[T]},

where Gen(k)[T] := {si : (s1, . . . , sn)← Gen(k) | i ∈ T}. If the two distributions here are iden-
tical, we say that the secret-sharing
scheme has perfect or information theo-
retic security.Additive secret sharing

One of the simplest (and surprisingly useful!) secret-sharing scheme
is additive secret sharing.

Construction

This is an n-out-of-n secret sharing scheme over any finite group,
such as the integers modulo p with addition. It is often useful to secret-share vectors

or matrices of elements modulo p.
• Gen(k) → (s1, . . . , sn). Sample n independent random values

s1, . . . , sn ← Zp that are uniform subject to k = ∑n
i=1 si mod p. The practical way to implement this

sampling procedure is to first pick n− 1
of the shares (s1, . . . , sn−1) indepen-
dently and uniformly at random and
then set sn ← (k−∑n−1

i=1 si) mod p.

• Recover(s1, . . . , sn)→ k. Return k← ∑n
i=1 si mod p.

Correctness holds by construction.

Security holds since any n− 1 shares are independently distributed
uniform random values modulo p. Additive secret sharing is per-
fectly secure—it is secure even without making computational as-
sumptions.

Feature: Applying functions to secret-shared data. One neat property of
the additive secret-sharing scheme is that it is possible to apply linear



secret sharing and its applications 4

functions to secret-shared data. That is, if parties hold shares of a Recall that a linear function is one
that can just add and scale elements by
constants.

secret k, they can compute shares of f (k) for any linear function f (·).
Let us look at this in more detail.
Let k ∈ Zd

p be a vector of dimension d modulo a fixed prime p.
Then additive shares of k are vectors s1, s2 ∈ Zd

p such that

k = s1 + s2 ∈ Zd
p.

We can represent any linear function f : Zd
p → Zd

p as a matrix M ∈
Zd×d

p .
Then observe that if we reconstruct the values of M · s1 and M · s2,

they reconstruct to M · s:

Recover(M · s1, M · s2) = M · s1 + M · s2

= M · (s1 + s2)

= M · s ∈ Zd
p.

So if Alice and Bob each hold shares of s, they can locally “convert”
them into shares of M · s, where M is any public matrix.

Here, we relied on the fact that the Recover algorithm for additive
secret sharing is linear. Not all secret-sharing schemes have this nice
linearity property, but many do, including Shamir’s scheme that we
will see in a moment.

Application: Private information retrieval

We will now show one simple (and yet powerful!) application of
additive secret sharing.

A two-server private information protocol (PIR) takes place between:

• two servers, each holding an B-bit database D = (D1, . . . , DB),
and

• a client, holding an index i ∈ {1, . . . , B}.
The client’s goal is to fetch the ith bit of the database from the servers,
without revealing which bit it fetched. The client could of course
download the entire B-bit data from one of the servers, but this
is costly in communication. Can the client privately fetch the ith
database bit while using o(B) bits of communication?

In a two-server PIR scheme, we want privacy to hold against an
adversary that controls at most one of the two servers. The security
goal is similar to that of CPA security:

Here, we assume that the protocol
consists of the client sending one
message to each server. Essentially all
existing PIR schemes have this format.

Definition 3 (PIR Security, informal). A two-server PIR scheme for
B-bit databases is secure if, for all i0, i1 ∈ {1, . . . , B} and all σ ∈ {1, 2}:{

Client’s query to server σ

on input i0

}
≡
{

Client’s query to server σ

on input i1

}
.



secret sharing and its applications 5

PIR from secret sharing. The client and servers write the database as a

matrix D ∈ Z
√

B×
√

B
2 . We work over Z2, though the choice of group Assume that B is a perfect square, or

round it up to one if not.does not matter much here. The client wants the database bit in entry
(i, j) of the matrix.

• The client constructs a query vector q ∈ Zd
2 that is zero

everywhere except with a “1” in position j—the index of the
column in which the client’s desired database bit lies.

• The client splits its vector q into additive shares q1, q2 ∈ Zd
2

and sends one share to each server. This is the only mes-
sage that the client sends to the servers, so security follows
immediately from the security of additive secret sharing.

• Each server applies the matrix D to their shares and returns
the result to the client.

• The client reconstructs Dq1 + Dq2 = Dq. Since q is zero
everywhere except at the jth index, the client recovers the
entire jth column of the database matrix D.

Finally, the total communication cost of the protocol is 4
√

B bits:√
B up and down to each server. To me, this seems like magic! The Even if B is not a perfect square, the

communication cost is still O(
√

B).client communicated
√

B � B bits with the servers and yet it man-
aged to “fish out” an entire database column without revealing
which one it received.

The best known upper bound on the communication complexity

of two-server PIR schemes is B
O(

√
log log B

log B ))
, due to Dvir and Gopi [4].

For comparison, the scheme we just gave has communication com-
plexity O(B1/2) The Dvir-Gopi scheme, asymptotically at least,
has much much much smaller communication complexity than the
scheme that we just gave. In their scheme, the exponent on B is goes
to zero as B→ ∞, while ours is a constant 1/2. If one-way functions exist, there are

two-server PIR protocols with com-
munication complexity O(log B)
(hiding polynomials in the security
parameter) [2]. And under a variety
of public-key assumptions [3], single-
server PIR schemes with polylog(B)
communication complexity exist.

One of the great open problems in this area is to construct a two-
server information-theoretic PIR scheme with better communica-
tion complexity. We know that all schemes require Ω(log B) bits—
you need log B bits just to express which index in the database you
want—but are there schemes that match this lower bound?

Shamir’s secret-sharing scheme

The additive secret-sharing scheme does not solve the jeweler’s prob-
lem from the start of lecture. The problem is that additive secret
sharing is an n-out-of-n secret-sharing scheme, where the jeweler
needs a t-out-of-n secret-sharing scheme for t ≈ n/2.



secret sharing and its applications 6

A combinatorial solution with exponentially many shares. One naïve way
to build a t-of-n secret sharing scheme is to additively secret share
the secret key to each size-t subset of the n parties. That scheme can
have an exponential number of shares, since(

n
t

)
≥
(n

t

)t
,

which is superpolynomial for many interesting choices of t, such as
t = Θ(n).

Shamir gave a secret-sharing scheme that has polynomial share
size for any threshold t. The key idea is to use polynomials: Two
points determine a line, but one point does not. Three points de-
termine a parabola, but two do not. More generally, any t points
completely determine a polynomial of degree at most t−, but with This holds not only over the reals and

complex numbers (as you may have
seen before), but also modulo any
prime p. More generally, this statement
holds over any field.

only t− 1 points, you cannot recover the entire polynomial.
We will work modulo a prime p > n.

• Gen(k)→ (s1, . . . , sn)

– Choose a random polynomial f of degree ≤ t − 1
with coefficients modulo p, subject to the constraint
that f (0) = k mod p. We can sample the polynomial by

setting its constant term to k and then
choosing independent uniform random
values modulo p for the other t − 1
coefficients.

– For i = 1, . . . , n, let si ← (i, f (i) mod p).

• Recover(si1 , . . . , sit)→ k.

– Parse the shares as (x1, y1), . . . , (xt, yt).

– Interpolate the unique polynomial f ′ (modulo p) that
passes through the points that the shares define.

– Output f ′(0) mod p.

Correctness. We need to show that show that interpolation succeeds
and that the polynomial f ′ that we recover is equal to the original
polynomial f that the sharer used to generate the shares.

To interpolate, we just need to solve the following linear system,
where the indeterminates are the coefficients of the polynomial f ′:

1 x1 x2
1 · · · xt−1

1
1 x2 x2

2 · · · xt−1
2

...
...

...
. . .

...
1 xt x2

t · · · xt−1
t

 ·


c0

c1
...

ct−1

 =


y1

y2
...

yt


That the polynomial f ′ is unique boils down to arguing that the

matrix on the left is invertible. (Equivalently, that there is a unique
solution to the linear system.) When (x1, . . . , xt) are distinct in Zp, a
matrix of this form is called a Vandermonde matrix over Zp. A fact
of life is that, for prime p, such a matrix is invertible. We can instantiate the PIR scheme

we described earlier with Shamir’s
secret-sharing scheme. This gives a PIR
scheme for n servers where the client
only needs responses from t servers (so
it is fault tolerant in that sense) and that
can tolerate the compromise of up to
t− 1 of the servers.



secret sharing and its applications 7

The polynomial f ′ that we recover is equal to the original polyno-
mial f at t points. Since these polynomials have degree at most t− 1,
they must then be equal everywhere. It follows that f ′(0) = k.

Security. Say that the adversary gets her hands on t − 1 of the
shares. Then for every possible value of the secret k, there is exactly
one polynomial f ′ that passes through the shares such that f ′(k). So
the adversary has no information on the secret.

Application: Secure multiparty computation

In a secure multiparty computation, there are a number of parties, each
with a private input. The parties want to jointly compute some (pub-
lic) function of their private inputs. For example, think of ten people
who all want to compute the average of their salaries without leaking
“anything else” about their salaries, except the average. This is actually not such a hypothet-

ical example! The Boston Women’s
Workforce Council has apparently used
this type of multiparty computation
to compute the average gender pay
gap across businesses in Boston. See:
https://thebwwc.org/mpc.

We do not have time to define secure multiparty computation
formally, and the definitions get hairy pretty quickly. So we will stick
with the informal one for now.

To start out, say that we have n parties, where the ith party holds
xi. The parties want to compute a linear function f (x1, . . . , xn) of their
inputs. The protocol is:

• Each party secret-shares their input using t-of-n secret shar-
ing.

• Each party sends one share to every other party.

• Each party locally applies the function f to their shares.

• Each party publishes their share of the output.

The linearity of the secret-sharing scheme means that the parties
reconstruct f (x1, . . . , xn) as desired.

You might wonder the parties do if they want to compute a non-
linear function of their secret inputs. The basic idea is to write out the
function as a circuit, made up of addition and multiplication codes
(modulo p). Using the linearity of the secret-sharing scheme, the
parties can compute, in a distributed sense, the shares of the output
of any addition gate given shares of the inputs. For multiplication
gates, things are more complicated [1]. I may sketch the idea if we
have time.

If there is time, we will also discuss secure aggregation.

https://thebwwc.org/mpc


secret sharing and its applications 8

References

[1] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Com-
pleteness theorems for non-cryptographic fault-tolerant dis-
tributed computation. In Symposium on the Theory of Computing
(STOC), pages 1–10, 1998.

[2] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing:
Improvements and extensions. In ACM SIGSAC Conference on
Computer and Communications Security, 2016.

[3] Christian Cachin, Silvio Micali, and Markus Stadler. Compu-
tationally private information retrieval with polylogarithmic
communication. In EUROCRYPT, 1999.

[4] Zeev Dvir and Sivakanth Gopi. 2-server pir with subpolynomial
communication. Journal of the ACM, 63(4):1–15, 2016.

[5] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.


	Outline
	Secret sharing
	Additive secret sharing
	Shamir's secret-sharing scheme
	Application: Secure multiparty computation

