Today: Pairing-based cryptography and applications

1. Definition

2. 3-way key agreement [Joux 2000]
3. Short Signature scheme [Boneh-Lynn-Shacham 2001]
4. Identity-based encryption scheme [Boneh-Franklin 2001]

Definition: Let G and G_{T} be two groups of prime order q .
Let $g \in G$ be a generator; i.e., $G=\left\{g, g^{2}, \ldots, g^{q-1}, 1\right\}$.
A pairing (or a bilinear map) is an efficiently computable bilinear function $e: G \times G \rightarrow G_{T}$ such that for every $a, b \in Z_{q}$,

$$
e\left(g^{a}, g^{b}\right)=e(g, g)^{a b}
$$

and $e(g, g) \neq 1$.

Corollary: $e(g, g)$ is a generator of G_{T}
This follows from the fact that a prime order group has only two subgroups the entire group and the trivial group consisting only of The identity. Since $e(g, g) \neq 1$ and since G_{T} is a prime order group it must hold that the group that is generated by $e(g, g)$ is the entire group G_{T}.

Claim: Let G be a prime order group and let $e: G \times G \rightarrow G_{T}$ be a bilinear map. Then $e\left(g^{a}, g^{b}\right)=e\left(g^{a b}, g\right)=e\left(g, g^{a b}\right)=e(g, g)^{a b}$

Claim: Let G be a prime order group and let $e: G \times G \rightarrow G_{T}$ be a bilinear map. Then the DDH assumption on G is false.

Proof: Consider the following algorithm that given a triplet g^{a}, g^{b}, g^{c} decides if $c=a b$ or if c is randomly distributed in Z_{q}. The algorithm checks if $e\left(g^{a}, g^{b}\right)=e\left(g, g^{c}\right)$. If this equality holds it outputs $c=a b$ and otherwise it predicts that c is uniformly distributed in Z_{q}.

Claim: Let G be a prime order group and let $e: G \times G \rightarrow G_{T}$ be a bilinear map. Then if the Discrete Log assumption is false in G_{T} is must also be false in G.

Proof: Let A be an algorithm that breaks the Discrete \log in G_{T} Namely, $\operatorname{Pr}_{h_{T} \leftarrow G_{T}}\left[A\left(h_{T}\right)=a\right.$ s.t. $\left.e(g, g)^{a}=h\right]$ is non-negligible.

We construct an algorithm B that has approximately the same runtime as A and breaks the discrete \log in G with approximately the same probability as A does.

Define $B(h)=A(e(g, h))$
It remains to note that if $h=g^{a}$ then $e(g, h)=e(g, g)^{a}$ and thus B succeeds whenever A succeeds.

Why are groups with bilinear maps useful??

1. We believe that the CDH Assumption holds in G. Namely, given
$\left(g^{a}, g^{b}\right)$ for random $a, b \leftarrow Z_{q}$ it is hard to compute $g^{a b}$
2. We believe the (decisional) bilinear Diffie-Hellman Assumption:

$$
\left(g^{a}, g^{b}, g^{c}, g^{a b c}\right) \approx\left(g^{a}, g^{b}, g^{c}, g^{u}\right)
$$

where $a, b, c, u \leftarrow Z_{q}$
3. We know how to construct groups with bilinear maps based on elliptic curves, for which non-trivial algorithms are not known for breaking the above two assumptions, and thus we can use short keys.
4. These groups has many applications!

Application 1: 3-Way Key Agreement [Joux 2000]

This is a generalization of the Diffie-Hellman key agreement.
Recall that the DH key agreement allows 2 parties to agree on a secret key non-interactively in the presence of a passive adversary that listens to the communication.

We will see how to extend this to 3 parties using bilinear maps:

Let G be a group of prime order q with a bilinear map

$$
e: G \times G \rightarrow G_{T}
$$

Consider 3 parties: Alice, Bob and Charlie.
Alice chooses a random $a \leftarrow Z_{q}$ and sends g^{a}
Bob chooses a random $b \leftarrow Z_{q}$ and sends g^{b}
Charlie chooses a random $c \leftarrow Z_{q}$ and sends g^{c}
The secret is $e(g, g)^{a b c}$.
Alice computes the secret by computing $e\left(g^{b}, g^{c}\right)^{a}=e(g, g)^{a b c}$.
Bob and Charlie compute it analogously.

This scheme is strongly secure against passive attacks assuming

$$
\left(g^{a}, g^{b}, g^{c}, g^{a b c}\right) \approx\left(g^{a}, g^{b}, g^{c}, g^{u}\right)
$$

Which is precisely the decisional bilinear DH assumption.

Open problem: Extend to more than 3 parties!

Can be done via an interactive protocol. Any function can be computed securely via an interactive protocol. This is known as secure multi-party computation (and is taught in 6.857).

1. Application 2: Short signature scheme [Boneh-Lynn-Shacham01]

In what follows we construct a signature scheme using groups with bilinear maps. The advantage of this scheme over previous schemes is that it produces extremely short signature schemes, consisting of only a single group element!

Moreover, since we use elliptic curve groups which do not have any non-trivial attacks (beyond the baby-step giant-step algorithm) we can take a relatively small security parameter.

Let G, G_{T} be cyclic groups of prime order q.
Let $g \in G$ be a generator and let $e: G \times G \rightarrow G_{T}$ be a bilinear map. Let $H: M \rightarrow G$ be a hash function modeled as a Random Oracle, where M is the message space.

Gen: Sample a random $x \leftarrow Z_{q}$. Let $p k=u=g^{x}$ and $s k=x$.
$\operatorname{Sign}(\boldsymbol{s k}, \boldsymbol{m})$: outputs $\boldsymbol{H}(\boldsymbol{m})^{s k}$
$\operatorname{Ver}(\boldsymbol{p} \boldsymbol{k}, \boldsymbol{m}, \boldsymbol{\sigma}):$ outputs 1 if and only if $\mathrm{e}(g, \sigma)=e(p k, H(m))$

Theorem: This signature scheme is secure (existentially unforgeable against adaptive chosen message attacks), assuming the CDH in G and assuming H is a Random Oracle.

Proof Idea: First note that this scheme is existentially unforgeable assuming the adversary does not see any signatures.

This is the case since o.w., the fact that H is a RO implies that the adversary given a random $r \leftarrow G$ and the public key g^{x} can generate a signature r^{x}. This breaks the CDH assumption.

Next, we argue that the signature oracle is of no help to the adversary.
This is the case, since when the adversary asks for a signature of a message $m \in M$ he obtains r^{x} for $r=H(m)$.

Since H is a RO this signature can be efficiently simulated by choosing $\sigma=p k^{u}=g^{x u}$ and then "programming" the RO to satisfy $H(m)=$ g^{u}.

Note: This signature is extremely short since it consists of a single group element which consists of only 256 bits (since we don't have non-trivial attacks on CDH in elliptic curves we can take small groups that consist of only 2^{256} elements.

Application 3: Identity-Based Encryption [Boneh-Franklin 2001]

In public key cryptography we assume that each party has a $p k$.

How do we know the other user's $\boldsymbol{p k}$?

This is a big problem with no good solution.
The way we deal with this problem in practice is using certification authorities (CA) that authorize public keys, but this does not work very well. There are many CA's. Which do we trust? How do they check the user's $p k$?

Identity-based encryption (IBE):
Use "natural" public keys, such as the user's email address.
The question is: How do we generate a corresponding $s k$?
This is precisely what IBE does.

An IBE assume a Trusted Third Party (TTP).

IBE Scheme:

TTP:

1. Choose a group G of prime order q that has a bilinear map $e: G \times G \rightarrow G_{T}$, and choose a generator g of G.
2. Choose 2 hash functions: H_{1} : names $\rightarrow G$ and $H_{2}: G_{T} \rightarrow M$, where M is the message space. Both H_{1} and H_{2} are modelled as Random Oracles.
3. Choose a random secret $s \leftarrow Z_{q}$
4. Publish $\left(G, G_{T}, e, g, H_{1}, H_{2}\right)$ as public parameters along with a master public key $m p k=g^{S}$.

Goal: Allow anyone to encrypt a msg to Alice given only her "name" and $m p k$.

Alice

$\operatorname{Enc}(p p, m p k, n a m e, m):$
Let $h_{A}=e\left(H_{1}(\right.$ name $\left.), m p k\right)=e\left(H_{1}(\text { name }), g\right)^{s}$.
Choose a random $r \leftarrow Z_{q}$ and output $\left(g^{r}, m \oplus H_{2}\left(h_{A}^{r}\right)\right)$

To decrypt Alice needs a corresponding $s k_{A}$ which she gets from TTP:

$$
s k_{A}=H_{1}(\text { "Alice" })^{s}
$$

$\operatorname{Dec}\left(p p, s k_{A},(u, v)\right):$
Compute $m=v \oplus H_{2}\left(e\left(s k_{A}, u\right)\right)$

Correctness: Follows from $e\left(s k_{A}, u\right)=h_{A}^{r}=e\left(H_{1}(\text { name }), g\right)^{s r}$
Security: follows from the bilinear DH assumption.

