
Today: Pairing-based cryptography and applications

1. Definition

2. 3-way key agreement [Joux 2000]

3. Short Signature scheme [Boneh-Lynn-Shacham 2001]

4. Identity-based encryption scheme [Boneh-Franklin 2001]

Definition: Let 𝐺 and 𝐺𝑇 be two groups of prime order q.

Let 𝑔 ∈ 𝐺 be a generator; i.e., 𝐺 = {𝑔, 𝑔2, … , 𝑔𝑞−1, 1}.

A pairing (or a bilinear map) is an efficiently computable bilinear

function 𝑒: 𝐺 × 𝐺 → 𝐺𝑇 such that for every 𝑎, 𝑏 ∈ 𝑍𝑞 ,

𝑒 𝑔𝑎, 𝑔𝑏 = 𝑒 𝑔, 𝑔 𝑎𝑏

and 𝑒 𝑔, 𝑔 ≠ 1.

Corollary: 𝑒 𝑔, 𝑔 is a generator of 𝐺𝑇

This follows from the fact that a prime order group has only two

subgroups the entire group and the trivial group consisting only of

The identity. Since 𝑒 𝑔, 𝑔 ≠ 1 and since 𝐺𝑇 is a prime order group

it must hold that the group that is generated by 𝑒 𝑔, 𝑔 is the entire

group 𝐺𝑇 .

Claim: Let 𝐺 be a prime order group and let 𝑒: 𝐺 × 𝐺 → 𝐺𝑇 be a

bilinear map. Then the DDH assumption on 𝐺 is false.

Proof: Consider the following algorithm that given a triplet

𝑔𝑎, 𝑔𝑏, 𝑔𝑐 decides if 𝑐 = 𝑎𝑏 or if 𝑐 is randomly distributed in 𝑍𝑞 .

The algorithm checks if 𝑒 𝑔𝑎, 𝑔𝑏 = 𝑒 𝑔, 𝑔𝑐 . If this equality holds it

outputs 𝑐 = 𝑎𝑏 and otherwise it predicts that 𝑐 is uniformly

distributed in 𝑍𝑞 .

Proof: Let 𝐴 be an algorithm that breaks the Discrete Log in 𝐺𝑇

Namely, Prℎ𝑇←𝐺𝑇[𝐴 ℎ𝑇 = 𝑎 s.t. 𝑒(𝑔, 𝑔)𝑎 = ℎ] is non-negligible.

We construct an algorithm 𝐵 that has approximately the same

runtime as 𝐴 and breaks the discrete log in 𝐺 with approximately the

same probability as 𝐴 does.

Claim: Let 𝐺 be a prime order group and let 𝑒: 𝐺 × 𝐺 → 𝐺𝑇 be a

bilinear map. Then if the Discrete Log assumption is false in 𝐺𝑇 is

must also be false in 𝐺.

Claim: Let 𝐺 be a prime order group and let 𝑒: 𝐺 × 𝐺 → 𝐺𝑇 be a

bilinear map. Then 𝑒 𝑔𝑎, 𝑔𝑏 = 𝑒 𝑔𝑎𝑏, 𝑔 = 𝑒 𝑔, 𝑔𝑎𝑏 = 𝑒 𝑔, 𝑔 𝑎𝑏

Define 𝐵 ℎ = 𝐴(𝑒 𝑔, ℎ)

It remains to note that if ℎ = 𝑔𝑎 then 𝑒 𝑔, ℎ = 𝑒 𝑔, 𝑔 𝑎 and thus

𝐵 succeeds whenever 𝐴 succeeds.

Why are groups with bilinear maps useful??

1. We believe that the CDH Assumption holds in 𝐺. Namely, given

𝑔𝑎, 𝑔𝑏 for random 𝑎, 𝑏 ← 𝑍𝑞 it is hard to compute 𝑔𝑎𝑏

2. We believe the (decisional) bilinear Diffie-Hellman Assumption:

𝑔𝑎, 𝑔𝑏, 𝑔𝑐 , 𝑔𝑎𝑏𝑐 ≈ 𝑔𝑎, 𝑔𝑏, 𝑔𝑐 , 𝑔𝑢

where 𝑎, 𝑏, 𝑐, 𝑢 ← 𝑍𝑞

3. We know how to construct groups with bilinear maps based on

elliptic curves, for which non-trivial algorithms are not known for

breaking the above two assumptions, and thus we can use short keys.

4. These groups has many applications!

Application 1: 3-Way Key Agreement [Joux 2000]

This is a generalization of the Diffie-Hellman key agreement.

Recall that the DH key agreement allows 2 parties to agree on a

secret key non-interactively in the presence of a passive adversary

that listens to the communication.

We will see how to extend this to 3 parties using bilinear maps:

Let 𝐺 be a group of prime order 𝑞 with a bilinear map

𝑒: 𝐺 × 𝐺 → 𝐺𝑇

Consider 3 parties: Alice, Bob and Charlie.

Alice chooses a random 𝑎 ← 𝑍𝑞 and sends 𝑔𝑎

Bob chooses a random 𝑏 ← 𝑍𝑞 and sends 𝑔𝑏

Charlie chooses a random 𝑐 ← 𝑍𝑞 and sends 𝑔𝑐

The secret is 𝑒 𝑔, 𝑔 𝑎𝑏𝑐 .

Alice computes the secret by computing 𝑒 𝑔𝑏, 𝑔𝑐
𝑎
= 𝑒 𝑔, 𝑔 𝑎𝑏𝑐 .

Bob and Charlie compute it analogously.

This scheme is strongly secure against passive attacks assuming

𝑔𝑎, 𝑔𝑏, 𝑔𝑐 , 𝑔𝑎𝑏𝑐 ≈ (𝑔𝑎, 𝑔𝑏, 𝑔𝑐 , g𝑢)

Which is precisely the decisional bilinear DH assumption.

Open problem: Extend to more than 3 parties!

Can be done via an interactive protocol. Any function can be

computed securely via an interactive protocol. This is known

as secure multi-party computation (and is taught in 6.857).

1. Application 2: Short signature scheme [Boneh-Lynn-Shacham01]

In what follows we construct a signature scheme using groups with

bilinear maps. The advantage of this scheme over previous schemes

is that it produces extremely short signature schemes, consisting of

only a single group element!

Moreover, since we use elliptic curve groups which do not have

any non-trivial attacks (beyond the baby-step giant-step

algorithm) we can take a relatively small security parameter.

𝑮𝒆𝒏: Sample a random 𝑥 ← 𝑍𝑞 . Let 𝑝𝑘 = 𝑢 = 𝑔𝑥 and 𝑠𝑘 = 𝑥.

Let 𝐺, 𝐺𝑇 be cyclic groups of prime order 𝑞.

Let 𝑔 ∈ 𝐺 be a generator and let 𝑒: 𝐺 × 𝐺 → 𝐺𝑇 be a bilinear map.

Let 𝐻:𝑀 → 𝐺 be a hash function modeled as a Random Oracle,

where 𝑀 is the message space.

𝑺𝒊𝒈𝒏 𝒔𝒌,𝒎 : outputs 𝑯 𝒎 𝒔𝒌

𝑽𝒆𝒓 𝒑𝒌,𝒎, 𝝈 : outputs 1 if and only if e 𝑔, 𝜎 = 𝑒(𝑝𝑘, 𝐻(𝑚))

Theorem: This signature scheme is secure (existentially unforgeable

against adaptive chosen message attacks), assuming the CDH in 𝐺

and assuming 𝐻 is a Random Oracle.

Proof Idea: First note that this scheme is existentially unforgeable

assuming the adversary does not see any signatures.

This is the case since o.w., the fact that 𝐻 is a RO implies that the

adversary given a random 𝑟 ← 𝐺 and the public key 𝑔𝑥 can generate

a signature 𝑟𝑥. This breaks the CDH assumption.

Next, we argue that the signature oracle is of no help to the adversary.

This is the case, since when the adversary asks for a signature of a

message 𝑚 ∈ 𝑀 he obtains 𝑟𝑥 for 𝑟 = 𝐻 𝑚 .

Since 𝐻 is a RO this signature can be efficiently simulated by choosing

𝜎 = 𝑝𝑘𝑢 = 𝑔𝑥𝑢 and then “programming” the RO to satisfy 𝐻 𝑚 =
𝑔𝑢.

Note: This signature is extremely short since it consists of a single

group element which consists of only 256 bits (since we don’t have

non-trivial attacks on CDH in elliptic curves we can take small groups

that consist of only 2256 elements.

Application 3: Identity-Based Encryption [Boneh-Franklin 2001]

In public key cryptography we assume that each party has a 𝑝𝑘.

How do we know the other user’s 𝒑𝒌?

This is a big problem with no good solution.

The way we deal with this problem in practice is using certification

authorities (CA) that authorize public keys, but this does not work very

well. There are many CA’s. Which do we trust? How do they check the

user’s 𝑝𝑘?

Identity-based encryption (IBE):

Use “natural” public keys, such as the user’s email address.

The question is: How do we generate a corresponding 𝑠𝑘?

This is precisely what IBE does.

An IBE assume a Trusted Third Party (TTP).

IBE Scheme:

TTP:

1. Choose a group 𝐺 of prime order 𝑞 that has a bilinear map

𝑒: 𝐺 × 𝐺 → 𝐺𝑇, and choose a generator 𝑔 of 𝐺.

2. Choose 2 hash functions: 𝐻1: 𝑛𝑎𝑚𝑒𝑠 → 𝐺 and 𝐻2: 𝐺𝑇 → 𝑀,

where 𝑀 is the message space. Both 𝐻1and 𝐻2 are modelled as

Random Oracles.

3. Choose a random secret 𝑠 ← 𝑍𝑞

4. Publish (𝐺, 𝐺𝑇 , 𝑒, 𝑔, 𝐻1, 𝐻2) as public parameters along with a

master public key 𝑚𝑝𝑘 = 𝑔𝑠.

Goal: Allow anyone to encrypt a msg to Alice given only her “name”

and 𝑚𝑝𝑘.

𝑬𝒏𝒄 𝒑𝒑,𝒎𝒑𝒌, 𝒏𝒂𝒎𝒆,𝒎 :

Let ℎ𝐴 = 𝑒 𝐻1 𝑛𝑎𝑚𝑒 ,𝑚𝑝𝑘 = 𝑒 𝐻1 𝑛𝑎𝑚𝑒 , 𝑔 𝑠.

Choose a random 𝑟 ← 𝑍𝑞 and output (𝑔𝑟 , 𝑚 ⊕𝐻2(ℎ𝐴
𝑟))

Similar to El-Gamal
with 𝑝𝑘𝐴 = ℎ𝐴

Alice

To decrypt Alice needs a corresponding 𝑠𝑘𝐴 which she gets from 𝑇𝑇𝑃:

𝑠𝑘𝐴 = 𝐻1 "𝐴𝑙𝑖𝑐𝑒" 𝑠

𝑫𝒆𝒄 𝒑𝒑, 𝒔𝒌𝑨, 𝒖, 𝒗 :

Compute 𝑚 = 𝑣⊕𝐻2(𝑒 𝑠𝑘𝐴, 𝑢)

Security: follows from the bilinear DH assumption.

Correctness: Follows from 𝑒 𝑠𝑘𝐴, 𝑢 = ℎ𝐴
𝑟 = 𝑒 𝐻1 𝑛𝑎𝑚𝑒 , 𝑔 𝑠𝑟

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

