Attacks on the RSA Cryptosystem
Notes by Henry Corrigan-Gibbs

MIT - 6.5610
Lecture 14 (March 22, 2023)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Outline

* Recap: The RSA function
e Rabin’s function

e Hastad’s broadcast attack
e Fault attack

e Small-root attacks

After giving a recap of the RSA function, we will discuss a number
of practical attacks that come about from various misuses of the RSA
function. Dan Boneh has a nice survey [1] of these attacks and many
others.

ATTACKS ON THE RSA CRYPTOSYSTEM 2

Recap: RSA Function

Trapdoor one-way permutations

As we discussed last time, RSA implements a trapdoor one-way per-
mutation (“trapdoor OWP”). A trapdoor one-way permutation over
space X is a triple of efficient algorithms:

e Gen(1") — (sk, pk). The key-generation algorithm takes as
input the security parameter A € N, expressed as a unary
string, and outputs a secret key and a public key.
* F(pk,x) — y. The evaluation algorithm F takes as input In the RSA construction, the input

space X depends on the public key, but

h li k i X 1
the public key pk and an input x € X, and outputs a value e e it tochmioal dermil here.

yedk.

e I(sk,y) — x'. The inversion algorithm I takes as input the
secret key sk and a point y € &, and outputs its inverse
¥ e X.

Correctness. For all A € N, (sk, pk) < Gen(1"), and x € X:

I(sk, F(pk,x)) = x.

Security. For all efficient adversaries A, there exists a negligible
function negl(-) such that
(sk, pk) + Gen(1%)

Pr | A(pk, F(pk,x)) = x: < negl(A).
x & X

IMPORTANT: Just as a one-way function is only hard to invert on
a randomly sampled input, a trapdoor one-way function is only hard
to invert on a randomly sampled input. Many of the cryptographic
failures of RSA that we will see today come from misuses of the RSA
function; such as assuming that it is hard to invert on non-random
inputs.

Applications. A trapdoor OWP immediately gives schemes for key
exchange, public-key encryption, and digital signatures.

RSA construction
Since we went through the RSA construction quickly last lecture, let’s
recap it here.

* Gen(1") — (sk, pk).

— Sample two random A-bit primes p and g (A ~ 1024)
such that p =g =5 (mod 6).

ATTACKS ON THE RSA CRYPTOSYSTEM

- SetN<+p-g.
- Output sk < (p,q), and pk = N.
* F(pk=N,x € Z};) — .
- Output y + x> mod N.
e I(sk=N,yezZy) —x'
- Reduce y modulo p and modulo 4.

- Find a cube root of y modulo p and modulo q. We
argued last time that when p and g are congruent to
5 modulo 6, we can compute these cube roots as:

p+1
! E

X, =y

q+1
/ &

(mod p) and x,=y (mod q).
- Reconstruct the solution x" modulo N using the
Chinese Remainder Theorem. Concretely, compute

a = xpg~ ' mod p and B = x;p~! mod ¢. Then

x' =g+ Bp (mod N).
- Output x'.

Why should the RSA function be hard to invert? Ideally we would be
able to say that any algorithm for inverting the RSA trapdoor OWP
on random inputs gives us an algorithm for factoring. But we have
no idea whether that is the case.

When we use RSA, we just make the assumption that RSA is
secure—that computing cube roots modulo a composite of unknown
factorization is hard:

Definition 1 (RSA Assumption, with public exponent 3). For all
efficient adversaries A there exists a negligible function negl(-) such
that:
p,q < Primes,
N<+vp-q
Pr [A(N,y) = x: < negl(A)
x & Zy

y + x> mod N

Reminder: Greatest common divisor

Recall that, for positive integers a, b, their greatest common divisor,
gcd(a,) is the largest integer that divides both numbers.

Theorem 2 (Euclid, etc.). There is an efficient algorithm that computes the
greatest common divisor of two positive integers.

Notice that x’ mod p = agmod p =
x,q~'qmod p = x),. We also have that
¥’ mod g = x; mod 4.

So x”® = y modulo p and modulo g,
and thus x® = y mod N.

Here we use Primes, to note the set of
A-bit primes.

ATTACKS ON THE RSA CRYPTOSYSTEM 4

Rabin’s trapdoor one-way function

Rabin proposed a trapdoor one-way function (not a permutation), that
is secure if factoring is hard. (In contrast, for all we know, factoring
could be hard but inverting the RSA function could be easy.)

Rabin’s trapdoor OWF, on RSA modulus N = p - q is just

Frabin(pk = N, x € Z%) := x*> mod N.

So it is just RSA with public exponent ¢ = 2.

Inverting Rabin’s one-way function is almost exactly as with in-
verting RSA, except that we now need to compute square roots of
y = x? modulo the prime factors p and g of N. We will not give the
argument here, but the security analysis of Rabin encryption shows
that computing square roots modulo composites is as hard as factor-
ing.

Why don’t we use Rabin encryption and signatures. I think this is just a
historical peculiarity. If Rabin’s construction had been first, maybe we
would have?

When p = g = 3 mod 4, there are two square roots of y modulo p,

and they are:
p+1

r==xy ¥ modyp

The argument is essentially as we used for cube roots in the last When we write —a mod p, we mean the

lecture: integer p — a.

p1 2251

prl

This last congruence comes from the fact that when y is a quadratic
residue modulo p (i.e., a square in Z;), we can write y = «? mod [
for some a € Zj,.

Inverting Rabin’s OWEF is as hard as factoring N. This is a beautiful
result. An alternative way to state it is that computing square roots
modulo composites is as hard as factoring.

We show that, given an efficient algorithm A for inverting Rabin’s
function, we can produce an efficient algorithm B for factoring RSA
moduli.

We construct the algorithm B(N = p - gq) as follows:

e Choose a random x <& Z%; and square it: y < x> mod N.
* Runr <+ A(N,y).
e Compute p’ < ged(N, x £ 7).

e If either value of p’ # 1, p’ is a factor of N.
Otherwise output “FAIL.”

ATTACKS ON THE RSA CRYPTOSYSTEM 5

To explain why this algorithm works, we have that

r?=x2 (mod N)
(r+x)(r—x)=0 (mod N)

So this relation holds modulo each of the prime factors of N:

(r+x)(r—x)=0 (mod p)
(r+x)(r—x)=0 (mod g).

Now for every value of x there are four values of r that can satisfy
these congruences. In particular, the value r can satisfy:

r—x=20 and r—x=0
r—x=20

) ()
mod p) and r+x=0 (mod gq) *)
) and r—x=0 ()

) ()

(
(

r+x=0 (mod p *
(

r+x=0 and r+x=0

So there are four possible roots of ¥ modulo N. One way to understand this is that
When r — x = 0 modulo both p and g, then r = x mod N. When y has two roots modulo p and two
roots modulo ¢. So there are 2 -2 = 4
r + x = 0 modulo both p and g, then r = —x mod N. In these cases, possible combinations of these two
our factoring algorithm fails. roots modulo N.
But in the two cases marked (*) above, gcd(N, r & x) does reveal
a factor of N. Say that 7 — x = O mod p and r + x # 0 mod 4. Then
(r — x) is a multiple of p but not of g, so gcd(r — x, N) = p, and we
are done.
To argue that the good case happens with probability 1/2: the al-
gorithm A has no information about which root x of y algorithm B
picked. So A will output one of the “useful” roots of x with probabil-
ity at least 1/2.

Why is Rabin as hard as factoring while RSA is not necessarily? This is
strange. This reduction B we constructed critically relies on the fact
that there are multiple square roots of ¥ modulo N. In contrast, there
is a single cube root of every y € Z*N modulo N, when we pick p

and g as we do in the RSA key-generation process. So the trick we Whenever p = g = 2mod 3 there
will be exactly one cube root of every

L . y € Z*N. If we picked p or g to be
RSA function is a permutation. 1 mod 3, then there could be multiple

used here to factor N does not work for exactly the reason that the

We can define other Rabin/RSA variants for which inverting is as roots.
hard as factoring: y = x* mod N, for example.

Greatest-common-divisor attack

A few years ago, a group of researchers [2] downloaded all of the
public RSA keys they could find on the Internet. They noticed that

ATTACKS ON THE RSA CRYPTOSYSTEM

there were pairs of RSA public keys (N, N’) such that
N=p-q and N =p-q,

where p, q,q" are distinct primes.

This typically happens when the RSA key-generation algorithm
uses a poor source of randomness. For example, when a network
router boots up for the first time, it might generate a keypair immedi-
ately after booting. If two devices begin in exactly the same state (as
they are on first boot), they could end up generating the same first
prime p before their states diverge and they generate distinct second
primes g # ¢q'.

One surprising fact is that given (N, N’) of this form, anyone can
factor both moduli!

If N = pgand N’ = pq’, we have gcd(N,N’) = p, and we can
factor both moduli. Implementing the 2012 attack [2] required com-
puting the pairwise greatest common divisors of many millions of
public keys. To do so, they used a slightly more involved algorithm,
but with this same general idea.

Broadcast attack

Last time we saw how to construct an unauthenticated key-exchange
scheme from a trapdoor OWP. Here we show how misuse of RSA-
based key exchange can lead to a devastating attack.

Say that Alice wants to establish a shared secret with three other
people, who have RSA public keys Ny, Np, N3.

Let B = min{Nj, N2, N3} To do so, Alice samples a random session
key r <~ Zp and publishes:

Y1 7 (mod Ny), (1)
Y2 3 (mod N;), and (2)
y3 <1 (mod N3). (3)

So the eavesdropper sees the values (Nj, Np, N3) and (y1,y2,y3). We
will show that an attacker can efficiently recover the session key 7,
given only these values.

Why doesn’t this attack contradict our assumption that the RSA function is
a secure trapdoor OWP? Even if the RSA function is secure as a trap-
door OWP, it may still be possible for an eavesdropper to recover the
secret session key r! This is so because, the trapdoor OWP definition
only requires that the function is hard to invert when a random 7 is
samples, and F(pk = N,r) := 73 mod N is published. Trapdoor OWP
security says nothing about taking the same value r and publishing its

This is more likely to happen on em-
bedded devices, which don’t have the
usual set of peripherals (disk, mouse,
etc.) that standard OSes use as sources
of environmental randomness.

Alice might plan to use this shared
secret for establishing an encrypted
group chat with her three friends.

ATTACKS ON THE RSA CRYPTOSYSTEM 7

image under F(pkq,), F(pky, -), and F(pks, -). In fact, it is possible to
recover r

The attack. Let M = N1N;Ns. By the Chinese Remainder Theorem,
from last lecture, (1)—(3), the eavesdropper can efficiently compute the
unique integer y, such that 1 <y < M, and such that

y=r> (mod M).

But notice now that since ¥ < B = min{Nj, Np, N3}, we have that

r3 < B3 < M. Since 2 is smaller than the modulus M, we know that
the exponentiation doesn’t “wrap around” the modulus M. In other
words, the following relation holds over the integers:

y=r c2.

So the eavesdropper can just compute the cube root of y over the
integers to recover the secret value 7.

Fault Attack

Many low-power devices, such as the chip in your chip-and-PIN
credit card, perform RSA signatures using a secret key should be
difficult to extract from the device. If an attacker gets physical control
of the device, she can heat it up, which increases the rate of errors in

intermediate computations. The “Rowhammer” attack is a way
to induce bit flips on a server even

We show that if an attacker can obtain the output of a faulty signa-) :)
without physical access to the machine.

ture computation, it can recover the signer’s secret key.

How an RSA signature should work. To sign a message with an RSA
secret key consisting of primes (p,q) and public key N = pg, the
signer first hashes the message m using a hash function H: {0,1}* —
Z3;. The signature is then the cube root of 1 = H(m) mod N.

To compute the signature, as we showed at the start of this lecture,
the attacker computes:

0p 13 mod p and 0q 173 mod g.

The then attacker reconstructs the cube root o € Z3; of h modulo N
using the Chinese Remainder Theorem.

The computation of ¢, and ¢, takes many thousands of CPU cy-
cles, since each involves a big-integer modular exponentiation. So, it
is absolutely possible for the computation of, say ¢, to be corrupted
by a bit flip, while the computation of ¢; is correct.

Assume that this happens, and the signer publishes the resulting

faulty signature 0. We show how the attacker can use 0 to factor the The signer can detect whether a fault
has happened by verifying the sig-
nature ¢ before publishing it and
regenerating the signature if it is faulty.

It is conceivable that a second fault

could happen during the signer’s
validity check, though the probability of
a second fault occurring in exactly the
right spot to cause the signer to miss a
faulty signature is exceedingly small.

ATTACKS ON THE RSA CRYPTOSYSTEM 8

modulus N.
Observe that:

o # H(m)® (mod p)
H(m)® (mod q)

&—H(m)?®#0 (mod p)

_
= —H(m)>=0 (mod q)

P
Il
<P

So & is a multiple of g, since it is zero modulo g, but is not a multiple
of p, since it is non-zero modulo p. Therefore, we can write & = k - g,
where k € Z is a positive integer that does not have p as a divisor.
This implies that:

gcd(N,0) =g,

so using the Euclidean algorithm we can recover a factor of N and we
are done.

Finding small roots of polynomials

There is a wide class of very powerful attacks on RSA-style cryp-
tosystems that come from “lattice-reduction” techniques.
This theorem, from a very nice survey of May [3], summarizes one

of the main results in the area: We require that f is has leading coeffi-
cient 1, but this is essentially without

Theorem 3 (Coppersmith, Howgrave-Graham, May, ...). Let p be a loss of generality for our applications

o > NP <1 since either the leading coefficient is

divisor of N such that p = N for some Fqnstant 0<p< ‘1 Let f I?e a invertible modulo N (in which case we

polynomial of degree 6 with integral coefficients. Then there is an efficient can divide it off) or its not (in which

algorithm that outputs all integers x such that case we have learned a factor of the
modulus N).

f(x) =0modp and lx| < NF*/9.

Here |x| < B indicates that x €
{~B,...,-1,0,1,...,B}.

Factoring with bits known

As an example application of Theorem 3, imagine that we are able
to learn the high-order 2/3 of the bits of a prime factor p of an RSA

modulus N = pq. It is not immediately clear how to use these bits to For example, someone might be able to
extract these bits off of a discarded hard

factor N—a brute-f ttack on th ining bits of 1d tak
actor a brute-force attack on the remaining bits of p would take drive they find in the trash.

exponential time.
Say that the A = log, p and let C € {0,...,2?*/3} be an integer
representing our 2A /3 known bits. Then write

flx)=2"3.C+x (mod p).

We know that there exists an xy € Z with |xo| < p'/? < N/4 such
that f(xp) == 0 mod p.

If we can find such an x(, we know that f(xy) € Z gives a multiple
of N we can compute a factor of N as gcd(N, f(xp)). To do so, apply
Theorem 3 with g = % — ﬁ and 6 = 1.

ATTACKS ON THE RSA CRYPTOSYSTEM ¢

If we want to factor with the low-order 21 /3 bits known, we can
apply Theorem 3 with the polynomial:

fx) =22A3x +C (mod p).

Recovering small preimages

When we defined the RSA function, we required sampling the input
x from the full domain Zj;. But we could also consider variants in
which x is sampled from some smaller subset of Z3;. We show that if
the subset is too small, the RSA function is easy to invert.

In particular, say that we sample m < {0,...,N'/5} and compute This type of attack explains why im-
plementers often use RSA with public
m N1/5 -C+ux exponent ¢ = 216 1+ 1, instead of e = 3.

y < m> (mod N),

where C € {0,...,N*/%} is a public constant. The attacker gets (N, y)
and wants to recover m.

Define f(x) = (N'/%.C + x)%. Then any solution f(xg) = 0
over the integers reveals the preimage of y under this modified RSA
function. The attacker can again use Theorem 3, with § = 1 and
6=3.

The Infineon bug

Infineon is a vendor of smartcards used in many types of computer
systems—for electronic ID cards, for hardware security modules in
laptops and phones, for payment cards, and so on. Infineon cards use
the RSA trapdoor OWP for signing and decryption.

A few years ago, some researchers discovered a critical flaw in
the way Infineon devices generate RSA keys [4]. The fallout was
widespread: many laptop vendors pushed firmware updates and the
government of Estonia temporarily suspended the use of over 700k
national ID cards.

What happened? Infineon engineers implemented an “optimized”
RSA key-generation procedure that involved sampling primes p and
q of a special form:

p=a-M+ (65537° mod M)
g=d M+ (65537" mod M),

where M is a public 970-bit constant, and a,b,4’, b’ are secret num-

bers roughly 128 bits long. Notice that there are more than 225
possible values of p and g, so a brute-

. . . . force attack at guessing a and b is
constructed with primes of this form, along with the value b, you can infeasible.

As we know from Theorem 3, if you are given a modulus N = pg,

ATTACKS ON THE RSA CRYPTOSYSTEM

factor the modulus. (This is again the problem of factoring with bits
known.) But how do we find the value b?
The value 65537° mod M lies in the set:

{65537° mod M, 65537' mod M, 655372 mod M, ... }.

How large can this set be? It is equal to the order of 65537 modulo M;
its size on average depends on the factorization of M. The more fac-
tors M has, the smaller the order will be on average. Unfortunately
for Infineon, they picked M = 2-3:5-7- -, which means that the
order is likely to be small. In fact the order of 65537 for Infineon’s

choice of parameters was =~ 2°°

—a feasible search space for a deter-
mined attacker.

The designers of the attack use additional cleverness to reduce
the attack cost even further by replacing M with a different value M’

such that 65537 has even smaller order modulo M’.

References

[1] Dan Boneh et al. Twenty years of attacks on the RSA cryptosys-
tem. Notices of the AMS, 46(2):203—213, 1999.

[2] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and] Alex
Halderman. Mining your Ps and Qs: Detection of widespread
weak keys in network devices. In USENIX Security, 2012.

[3] Alexander May. Using LLL-reduction for solving RSA and factor-
ization problems. In The LLL Algorithm: Survey and Applications,
pages 315-348. Springer, 2009.

[4] Matus Nemec, Marek Sys, Petr Svenda, Dusan Klinec, and
Vashek Matyas. The return of Coppersmith’s attack: Practical
factorization of widely used RSA moduli. In ACM Conference on
Computer and Communications Security, 2017.

10

	Outline
	Recap: RSA Function
	Reminder: Greatest common divisor
	Rabin's trapdoor one-way function
	Greatest-common-divisor attack
	Fault Attack
	Finding small roots of polynomials
	The Infineon bug

