
Attacks on the RSA Cryptosystem
Notes by Henry Corrigan-Gibbs

MIT - 6.5610
Lecture 14 (March 22, 2023)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Outline

• Recap: The RSA function

• Rabin’s function

• Hastad’s broadcast attack

• Fault attack

• Small-root attacks

After giving a recap of the RSA function, we will discuss a number
of practical attacks that come about from various misuses of the RSA
function. Dan Boneh has a nice survey [1] of these attacks and many
others.

attacks on the rsa cryptosystem 2

Recap: RSA Function

Trapdoor one-way permutations

As we discussed last time, RSA implements a trapdoor one-way per-
mutation (“trapdoor OWP”). A trapdoor one-way permutation over
space X is a triple of efficient algorithms:

• Gen(1λ) → (sk, pk). The key-generation algorithm takes as
input the security parameter λ ∈ N, expressed as a unary
string, and outputs a secret key and a public key.

• F(pk, x) → y. The evaluation algorithm F takes as input In the RSA construction, the input
space X depends on the public key, but
we elide that technical detail here.

the public key pk and an input x ∈ X , and outputs a value
y ∈ X .

• I(sk, y) → x′. The inversion algorithm I takes as input the
secret key sk and a point y ∈ X , and outputs its inverse
x′ ∈ X .

Correctness. For all λ ∈N, (sk, pk)← Gen(1λ), and x ∈ X :

I(sk, F(pk, x)) = x.

Security. For all efficient adversaries A, there exists a negligible
function negl(·) such that

Pr

[
A(pk, F(pk, x)) = x :

(sk, pk)← Gen(1λ)

x ←R X

]
≤ negl(λ).

IMPORTANT: Just as a one-way function is only hard to invert on
a randomly sampled input, a trapdoor one-way function is only hard
to invert on a randomly sampled input. Many of the cryptographic
failures of RSA that we will see today come from misuses of the RSA
function; such as assuming that it is hard to invert on non-random
inputs.

Applications. A trapdoor OWP immediately gives schemes for key
exchange, public-key encryption, and digital signatures.

RSA construction

Since we went through the RSA construction quickly last lecture, let’s
recap it here.

• Gen(1λ)→ (sk, pk).

– Sample two random λ-bit primes p and q (λ ≈ 1024)
such that p ≡ q ≡ 5 (mod 6).

attacks on the rsa cryptosystem 3

– Set N ← p · q.

– Output sk← (p, q), and pk = N.

• F(pk = N, x ∈ Z∗N)→ y.

– Output y← x3 mod N.

• I(sk = N, y ∈ Z∗N)→ x′.

– Reduce y modulo p and modulo q.

– Find a cube root of y modulo p and modulo q. We
argued last time that when p and q are congruent to
5 modulo 6, we can compute these cube roots as:

x′p = y
p+1

6 (mod p) and x′q = y
q+1

6 (mod q).

– Reconstruct the solution x′ modulo N using the
Chinese Remainder Theorem. Concretely, compute
α = x′pq−1 mod p and β = x′q p−1 mod q. Then Notice that x′ mod p = αq mod p =

x′pq−1q mod p = x′p. We also have that
x′ mod q = xq mod q.

So x′3 = y modulo p and modulo q,
and thus x′3 = y mod N.

x′ = αq + βp (mod N).

– Output x′.

Why should the RSA function be hard to invert? Ideally we would be
able to say that any algorithm for inverting the RSA trapdoor OWP
on random inputs gives us an algorithm for factoring. But we have
no idea whether that is the case.

When we use RSA, we just make the assumption that RSA is
secure—that computing cube roots modulo a composite of unknown
factorization is hard:

Definition 1 (RSA Assumption, with public exponent 3). For all
efficient adversaries A there exists a negligible function negl(·) such
that: Here we use Primesλ to note the set of

λ-bit primes.

Pr

A(N, y) = x :

p, q←R Primesλ

N ← p · q
x ←R Z∗N

y← x3 mod N

 ≤ negl(λ)

Reminder: Greatest common divisor

Recall that, for positive integers a, b, their greatest common divisor,
gcd(a, b) is the largest integer that divides both numbers.

Theorem 2 (Euclid, etc.). There is an efficient algorithm that computes the
greatest common divisor of two positive integers.

attacks on the rsa cryptosystem 4

Rabin’s trapdoor one-way function

Rabin proposed a trapdoor one-way function (not a permutation), that
is secure if factoring is hard. (In contrast, for all we know, factoring
could be hard but inverting the RSA function could be easy.)

Rabin’s trapdoor OWF, on RSA modulus N = p · q is just

FRabin(pk = N, x ∈ Z∗N) := x2 mod N.

So it is just RSA with public exponent e = 2.
Inverting Rabin’s one-way function is almost exactly as with in-

verting RSA, except that we now need to compute square roots of
y = x2 modulo the prime factors p and q of N. We will not give the
argument here, but the security analysis of Rabin encryption shows
that computing square roots modulo composites is as hard as factor-
ing.

Why don’t we use Rabin encryption and signatures. I think this is just a
historical peculiarity. If Rabin’s construction had been first, maybe we
would have?

When p ≡ q ≡ 3 mod 4, there are two square roots of y modulo p,
and they are:

r = ±y
p+1

4 mod p

The argument is essentially as we used for cube roots in the last When we write −a mod p, we mean the
integer p− a.lecture:

r2 = (−r)2 = y
p+1

2 = y
p−1

2 y = (α2)
p−1

2 y = y (mod p).

This last congruence comes from the fact that when y is a quadratic
residue modulo p (i.e., a square in Z∗p), we can write y = α2 mod p,
for some α ∈ Z∗p.

Inverting Rabin’s OWF is as hard as factoring N. This is a beautiful
result. An alternative way to state it is that computing square roots
modulo composites is as hard as factoring.

We show that, given an efficient algorithm A for inverting Rabin’s
function, we can produce an efficient algorithm B for factoring RSA
moduli.

We construct the algorithm B(N = p · q) as follows:

• Choose a random x ←R Z∗N and square it: y← x2 mod N.

• Run r ← A(N, y).

• Compute p′ ← gcd(N, x± r).

• If either value of p′ 6= 1, p′ is a factor of N.
Otherwise output “FAIL.”

attacks on the rsa cryptosystem 5

To explain why this algorithm works, we have that

r2 = x2 (mod N)

(r + x)(r− x) = 0 (mod N) .

So this relation holds modulo each of the prime factors of N:

(r + x)(r− x) = 0 (mod p)

(r + x)(r− x) = 0 (mod q).

Now for every value of x there are four values of r that can satisfy
these congruences. In particular, the value r can satisfy:

r− x = 0 (mod p) and r− x = 0 (mod q)

r− x = 0 (mod p) and r + x = 0 (mod q) (*)

r + x = 0 (mod p) and r− x = 0 (mod q) (*)

r + x = 0 (mod p) and r + x = 0 (mod q)

So there are four possible roots of y modulo N. One way to understand this is that
y has two roots modulo p and two
roots modulo q. So there are 2 · 2 = 4
possible combinations of these two
roots modulo N.

When r − x = 0 modulo both p and q, then r = x mod N. When
r + x = 0 modulo both p and q, then r = −x mod N. In these cases,
our factoring algorithm fails.

But in the two cases marked (*) above, gcd(N, r ± x) does reveal
a factor of N. Say that r − x = 0 mod p and r + x 6= 0 mod q. Then
(r − x) is a multiple of p but not of q, so gcd(r − x, N) = p, and we
are done.

To argue that the good case happens with probability 1/2: the al-
gorithm A has no information about which root x of y algorithm B
picked. So A will output one of the “useful” roots of x with probabil-
ity at least 1/2.

Why is Rabin as hard as factoring while RSA is not necessarily? This is
strange. This reduction B we constructed critically relies on the fact
that there are multiple square roots of y modulo N. In contrast, there
is a single cube root of every y ∈ Z∗N modulo N, when we pick p
and q as we do in the RSA key-generation process. So the trick we Whenever p = q = 2 mod 3 there

will be exactly one cube root of every
y ∈ Z∗N. If we picked p or q to be
1 mod 3, then there could be multiple
roots.

used here to factor N does not work for exactly the reason that the
RSA function is a permutation.

We can define other Rabin/RSA variants for which inverting is as
hard as factoring: y = x4 mod N, for example.

Greatest-common-divisor attack

A few years ago, a group of researchers [2] downloaded all of the
public RSA keys they could find on the Internet. They noticed that

attacks on the rsa cryptosystem 6

there were pairs of RSA public keys (N, N′) such that

N = p · q and N′ = p · q′,

where p, q, q′ are distinct primes.
This typically happens when the RSA key-generation algorithm

uses a poor source of randomness. For example, when a network
router boots up for the first time, it might generate a keypair immedi-
ately after booting. If two devices begin in exactly the same state (as
they are on first boot), they could end up generating the same first
prime p before their states diverge and they generate distinct second
primes q 6= q′. This is more likely to happen on em-

bedded devices, which don’t have the
usual set of peripherals (disk, mouse,
etc.) that standard OSes use as sources
of environmental randomness.

One surprising fact is that given (N, N′) of this form, anyone can
factor both moduli!

If N = pq and N′ = pq′, we have gcd(N, N′) = p, and we can
factor both moduli. Implementing the 2012 attack [2] required com-
puting the pairwise greatest common divisors of many millions of
public keys. To do so, they used a slightly more involved algorithm,
but with this same general idea.

Broadcast attack

Last time we saw how to construct an unauthenticated key-exchange
scheme from a trapdoor OWP. Here we show how misuse of RSA-
based key exchange can lead to a devastating attack.

Say that Alice wants to establish a shared secret with three other
people, who have RSA public keys N1, N2, N3. Alice might plan to use this shared

secret for establishing an encrypted
group chat with her three friends.

Let B = min{N1, N2, N3} To do so, Alice samples a random session
key r ←R ZB and publishes:

y1 ← r3 (mod N1), (1)

y2 ← r3 (mod N2), and (2)

y3 ← r3 (mod N3). (3)

So the eavesdropper sees the values (N1, N2, N3) and (y1, y2, y3). We
will show that an attacker can efficiently recover the session key r,
given only these values.

Why doesn’t this attack contradict our assumption that the RSA function is
a secure trapdoor OWP? Even if the RSA function is secure as a trap-
door OWP, it may still be possible for an eavesdropper to recover the
secret session key r! This is so because, the trapdoor OWP definition
only requires that the function is hard to invert when a random r is
samples, and F(pk = N, r) := r3 mod N is published. Trapdoor OWP
security says nothing about taking the same value r and publishing its

attacks on the rsa cryptosystem 7

image under F(pk1, ·), F(pk2, ·), and F(pk3, ·). In fact, it is possible to
recover r

The attack. Let M = N1N2N3. By the Chinese Remainder Theorem,
from last lecture, (1)–(3), the eavesdropper can efficiently compute the
unique integer y, such that 1 ≤ y ≤ M, and such that

y = r3 (mod M).

But notice now that since r < B = min{N1, N2, N3}, we have that
r3 < B3 ≤ M. Since r3 is smaller than the modulus M, we know that
the exponentiation doesn’t “wrap around” the modulus M. In other
words, the following relation holds over the integers:

y = r3 ∈ Z.

So the eavesdropper can just compute the cube root of y over the
integers to recover the secret value r.

Fault Attack

Many low-power devices, such as the chip in your chip-and-PIN
credit card, perform RSA signatures using a secret key should be
difficult to extract from the device. If an attacker gets physical control
of the device, she can heat it up, which increases the rate of errors in
intermediate computations. The “Rowhammer” attack is a way

to induce bit flips on a server even
without physical access to the machine.

We show that if an attacker can obtain the output of a faulty signa-
ture computation, it can recover the signer’s secret key.

How an RSA signature should work. To sign a message with an RSA
secret key consisting of primes (p, q) and public key N = pq, the
signer first hashes the message m using a hash function H : {0, 1}∗ →
Z∗N . The signature is then the cube root of h = H(m) mod N.

To compute the signature, as we showed at the start of this lecture,
the attacker computes:

σp ← h1/3 mod p and σq ← h1/3 mod q.

The then attacker reconstructs the cube root σ ∈ Z∗N of h modulo N
using the Chinese Remainder Theorem.

The computation of σp and σq takes many thousands of CPU cy-
cles, since each involves a big-integer modular exponentiation. So, it
is absolutely possible for the computation of, say σp to be corrupted
by a bit flip, while the computation of σq is correct.

Assume that this happens, and the signer publishes the resulting
faulty signature σ̂. We show how the attacker can use σ̂ to factor the The signer can detect whether a fault

has happened by verifying the sig-
nature σ̂ before publishing it and
regenerating the signature if it is faulty.

It is conceivable that a second fault
could happen during the signer’s
validity check, though the probability of
a second fault occurring in exactly the
right spot to cause the signer to miss a
faulty signature is exceedingly small.

attacks on the rsa cryptosystem 8

modulus N.
Observe that:

σ̂ 6= H(m)3 (mod p) =⇒ σ̂− H(m)3 6= 0 (mod p)

σ̂ = H(m)3 (mod q) =⇒ σ̂− H(m)3 = 0 (mod q)

So σ̂ is a multiple of q, since it is zero modulo q, but is not a multiple
of p, since it is non-zero modulo p. Therefore, we can write σ̂ = k · q,
where k ∈ Z is a positive integer that does not have p as a divisor.
This implies that:

gcd(N, σ̂) = q,

so using the Euclidean algorithm we can recover a factor of N and we
are done.

Finding small roots of polynomials

There is a wide class of very powerful attacks on RSA-style cryp-
tosystems that come from “lattice-reduction” techniques.

This theorem, from a very nice survey of May [3], summarizes one
of the main results in the area: We require that f is has leading coeffi-

cient 1, but this is essentially without
loss of generality for our applications
since either the leading coefficient is
invertible modulo N (in which case we
can divide it off) or its not (in which
case we have learned a factor of the
modulus N).

Theorem 3 (Coppersmith, Howgrave-Graham, May, . . .). Let p be a
divisor of N such that p ≥ Nβ for some constant 0 < β ≤ 1. Let f be a
polynomial of degree δ with integral coefficients. Then there is an efficient
algorithm that outputs all integers x such that

f (x) = 0 mod p and |x| ≤ Nβ2/δ.

Here |x| ≤ B indicates that x ∈
{−B, . . . ,−1, 0, 1, . . . , B}.

Factoring with bits known

As an example application of Theorem 3, imagine that we are able
to learn the high-order 2/3 of the bits of a prime factor p of an RSA
modulus N = pq. It is not immediately clear how to use these bits to For example, someone might be able to

extract these bits off of a discarded hard
drive they find in the trash.

factor N—a brute-force attack on the remaining bits of p would take
exponential time.

Say that the λ = log2 p and let C ∈ {0, . . . , 22λ/3} be an integer
representing our 2λ/3 known bits. Then write

f (x) = 2λ/3 · C + x (mod p).

We know that there exists an x0 ∈ Z with |x0| < p1/2 ≤ N1/4 such
that f (x0) ≡= 0 mod p.

If we can find such an x0, we know that f (x0) ∈ Z gives a multiple
of N we can compute a factor of N as gcd(N, f (x0)). To do so, apply
Theorem 3 with β = 1

2 −
1

1000 and δ = 1.

attacks on the rsa cryptosystem 9

If we want to factor with the low-order 2λ/3 bits known, we can
apply Theorem 3 with the polynomial:

f (x) = 22λ/3x + C (mod p).

Recovering small preimages

When we defined the RSA function, we required sampling the input
x from the full domain Z∗N . But we could also consider variants in
which x is sampled from some smaller subset of Z∗N . We show that if
the subset is too small, the RSA function is easy to invert.

In particular, say that we sample m← {0, . . . , N1/5} and compute This type of attack explains why im-
plementers often use RSA with public
exponent e = 216 + 1, instead of e = 3.m← N1/5 · C + x

y← m3 (mod N),

where C ∈ {0, . . . , N4/5} is a public constant. The attacker gets (N, y)
and wants to recover m.

Define f (x) = (N1/5 · C + x)3. Then any solution f (x0) = 0
over the integers reveals the preimage of y under this modified RSA
function. The attacker can again use Theorem 3, with β = 1 and
δ = 3.

The Infineon bug

Infineon is a vendor of smartcards used in many types of computer
systems—for electronic ID cards, for hardware security modules in
laptops and phones, for payment cards, and so on. Infineon cards use
the RSA trapdoor OWP for signing and decryption.

A few years ago, some researchers discovered a critical flaw in
the way Infineon devices generate RSA keys [4]. The fallout was
widespread: many laptop vendors pushed firmware updates and the
government of Estonia temporarily suspended the use of over 700k
national ID cards.

What happened? Infineon engineers implemented an “optimized”
RSA key-generation procedure that involved sampling primes p and
q of a special form:

p = a ·M + (65537b mod M)

q = a′ ·M + (65537b′ mod M),

where M is a public 970-bit constant, and a, b, a′, b′ are secret num-
bers roughly 128 bits long. Notice that there are more than 2256

possible values of p and q, so a brute-
force attack at guessing a and b is
infeasible.

As we know from Theorem 3, if you are given a modulus N = pq,
constructed with primes of this form, along with the value b, you can

attacks on the rsa cryptosystem 10

factor the modulus. (This is again the problem of factoring with bits
known.) But how do we find the value b?

The value 65537b mod M lies in the set:

{655370 mod M, 655371 mod M, 655372 mod M, . . . }.

How large can this set be? It is equal to the order of 65537 modulo M;
its size on average depends on the factorization of M. The more fac-
tors M has, the smaller the order will be on average. Unfortunately
for Infineon, they picked M = 2 · 3 · 5 · 7 · · · , which means that the
order is likely to be small. In fact the order of 65537 for Infineon’s
choice of parameters was ≈ 255—a feasible search space for a deter-
mined attacker.

The designers of the attack use additional cleverness to reduce
the attack cost even further by replacing M with a different value M′

such that 65537 has even smaller order modulo M′.

References

[1] Dan Boneh et al. Twenty years of attacks on the RSA cryptosys-
tem. Notices of the AMS, 46(2):203–213, 1999.

[2] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J Alex
Halderman. Mining your Ps and Qs: Detection of widespread
weak keys in network devices. In USENIX Security, 2012.

[3] Alexander May. Using LLL-reduction for solving RSA and factor-
ization problems. In The LLL Algorithm: Survey and Applications,
pages 315–348. Springer, 2009.

[4] Matus Nemec, Marek Sys, Petr Svenda, Dusan Klinec, and
Vashek Matyas. The return of Coppersmith’s attack: Practical
factorization of widely used RSA moduli. In ACM Conference on
Computer and Communications Security, 2017.

	Outline
	Recap: RSA Function
	Reminder: Greatest common divisor
	Rabin's trapdoor one-way function
	Greatest-common-divisor attack
	Fault Attack
	Finding small roots of polynomials
	The Infineon bug

