
The RSA Cryptosystem
Notes by Henry Corrigan-Gibbs

MIT - 6.5610
Lecture 13 (March 20, 2023)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Outline

• Historical notes

• Trapdoor one-way permutations

– Definition

– Applications

• The RSA construction

– Forward direction

– Comments on security

– Inverse direction



the rsa cryptosystem 2

Background: RSA

1974: Ralph Merkle introduced public key exchange in an 1974

undergraduate project report at Berkeley [4]. He gave a key-exchange
protocol based on one-way functions in which the honest parties run
in time n and the best attack runs in time Ω(n2).

1976: Diffie and Hellman, in their New Directions paper [1], defined
public key exchange, public-key encryption, and digital signatures.
They constructed a key-exchange scheme from discrete log with
conjectured security against all poly-time adversaries: honest parties
run in time n, attacker runs in superpolynomial time.

1977: Rivest, Shamir, and Adleman (RSA) [2, 5] give the first con-
struction of public-key encryption and digital signatures from a prob-
lem related to the hardness of factoring integers. Later results from Lamport, Merkle,

Naor and Yung, and others showed
that it is possible to build digital-
signature schemes from one-way
functions alone—i.e., just from standard
hash functions. Today, we still do not
know how to construct public-key
encryption or key exchange from one-
way functions.

2011: Google’s HTTPS servers stop using RSA-based key exchange
by default. Instead, they use RSA-based key exchange only for back-
wards compatibility with old clients. (Most HTTPS servers today
still use RSA for digital signatures to authenticate the messages in a
Diffie-Hellman key exchange.)

Why study RSA? The RSA cryptosystem is interesting for a few
reasons:

• RSA’s security is related to the problem of factoring large
integers, which is (arguably) the most natural “hard” compu-
tational problem out there.

• RSA gives the only known instantiation of a trapdoor one-way
permutation, which we will define shortly.

• RSA has a number of esoteric properties that are useful for
advanced cryptographic constructions. For example, it gives
a “group of unknown order”—see Boneh-Shoup, Chapter
10.9 for details.

• RSA signatures are used on the vast majority of public-key
certificates today.1 1 As of today, around 94% of certificates

in the Certificate Transparency logs
use RSA signatures: https://ct.
cloudflare.com/.

https://toc.cryptobook.us/book.pdf#page=436
https://toc.cryptobook.us/book.pdf#page=436
https://ct.cloudflare.com/
https://ct.cloudflare.com/


the rsa cryptosystem 3

Trapdoor one-way permutations

Definition

RSA implements a trapdoor one-way permutation (“trapdoor OWP”),
which we will now define.

A trapdoor one-way permutation over input space X is a triple of
efficient algorithms: If we wanted to be completely formal,

the input space would be parameter-
ized by the security parameter λ. So
we would have a family of input spaces
{Xλ}λ∈N—one for each choice of λ.
This way the input space can grow
with λ.

• Gen(1λ) → (sk, pk). The key-generation algorithm takes as
input the security parameter λ ∈ N, expressed as a unary
string, and outputs a secret key and a public key.

• F(pk, x) → y. The evaluation algorithm F takes as input In the RSA construction, the input
space X depends on the public key, but
we elide that technical detail here.

the public key pk and an input x ∈ X , and outputs a value
y ∈ X .

• I(sk, y) → x′. The inversion algorithm I takes as input the
secret key sk and a point y ∈ X , and outputs its inverse
x ∈ X .

Correctness. Informally, we want that for keypairs (sk, pk) output by
Gen, we have that F(pk, ·) and I(sk, ·) are inverses of each other. More
formally, for all λ ∈N, (sk, pk)← Gen(1λ), and x ∈ X , we require:

I(sk, F(pk, x)) = x.

Security. Security requires that F(pk, ·) is hard to invert (in the sense
of a one-way function) on a randomly sampled input in the input
space X , even when the adversary is given the public key pk. That
is, for all efficient adversaries A, there exists a negligible function
negl(·) such that

Pr

[
A(pk, F(pk, x)) = x :

(sk, pk)← Gen(1λ)

x ←R X

]
≤ negl(λ).

IMPORTANT: Just as a one-way function is only hard to invert on
a randomly sampled input, a trapdoor one-way function is only hard
to invert on a randomly sampled input. Many of the cryptographic
failures of RSA come from assuming that the RSA one-way function
is hard to invert on non-random inputs.



the rsa cryptosystem 4

Applications of trapdoor OWPs

Before describing how to construct a trapdoor one-way permutation,
we give some applications of the primitive. Constructions of public-
key encryption and digital signatures are almost immediate from
trapdoor one-way functions.

Unauthenticated key exchange

We construct a key-exchange protocol that is secure against passive
attacks. In particular, we use:

• a trapdoor OWP (Gen, F, I), and

• a hash function H : X → {0, 1}n, which we model as a
random oracle.

• Alice generates a keypair (sk, pk) ← Gen() and sends pk to
Bob.

• Bob samples k ←R X and sends y ← F(pk, k) to Alice. Bob
uses H(k) as his shared secret with Alice.

• Alice computes k′ ← I(sk, y) and uses H(k′) as her shared
secret with Bob.

Correctness. We have k′ = I(sk, y) = I(sk, F(pk, k)) = k, so H(k) =

H(k′) and Alice and Bob end up with the same shared secret key.

Security. Showing weak security—that a passive eavesdropper can-
not guess the shared secret—is almost immediate. For simplicity
here, let’s remove the hash function in the above construction. Then
the passive attacker sees (pk, y) and her job is to produce x such that
F(pk, x) = y. This is exactly the task of inverting the trapdoor one-
way permutation F! Therefore if F is secure, no efficient adversary
can break passive security of this key-exchange mechanism.

To get strong security against passive attacks—i.e., to show that
no passive attacker can even distinguish the shared secret from
random—we just hash the shared key that both parties hold. In the

See Boneh-Shoup, Chapter 10.2.1 for the full security analysis.

Digital signatures

This construction is called “full-domain hash,” and it follows the
“hash-and-sign” paradigm that Yael discussed in her lecture on hash
functions.

We use:

• a trapdoor OWP (Gen, F, I), and

https://toc.cryptobook.us/book.pdf#page=417


the rsa cryptosystem 5

• a hash function H : {0, 1}∗ → X , which we model as a ran-
dom oracle in the security analysis.

Construction. We construct a digital-signature scheme (Gen,Sign,Ver)
as follows:

• Gen – Just run the key-generation algorithm for the trapdoor
OWP.

• Sign(sk, m) → σ. Hash the message down to an element h
of the input space X of the trapdoor OWP using the hash
function H. Then invert the trapdoor OWP at that point:

– Compute h← H(m).

– Output σ← I(sk, h).

• Ver(pk, m, σ)→ {0, 1}.

– Compute h′ ← H(m).

– Accept if F(pk, σ) = h′.

Notice that the use of a hash function here is critical to security,
since (in the random oracle) it means that forging a signature is as
hard as inverting F on a random point in its co-domain. Without the
hash function, forging a signature is only as hard as inverting F on an
attacker-chosen point in its co-domain, which could be easy. In fact, inverting F at attacker-chosen

points is easy when F is the RSA
function.

Correctness. For all λ ∈ N, (sk, pk) ← Gen(1λ), and m ∈ {0, 1}∗, we
have:

Ver(pk, m,Sign(sk, m)) = 1{F(pk, I(sk, H(m))) = H(m)}
= 1{I(sk, F(pk, I(sk, H(m)))) = I(sk, H(m))}

and by correctness of the trapdoor one-way permutation:

= 1{I(sk, H(m)) = I(sk, H(m))} = 1.

Security. The intuition here is that if the adversary cannot invert F, it
cannot find the preimage of H(m) under F for any message on which
it has not seen a signature. See Boneh-Shoup Chapter 13.3 for the full
security analysis.

https://toc.cryptobook.us/book.pdf#page=550


the rsa cryptosystem 6

The RSA construction: Forward direction

The algorithms for key-generation and for evaluating the RSA per-
mutation in the forward direction are not too complicated.

In what follows, we present RSA with public exponent e = 3.
The same construction works with many other choices of e, just by
replacing all of the “3”s below with some other small prime: 7, 13,
etc. A popular choice of the public exponent d in practice is e = 216 +

1. The complexity of computing the RSA function in the forward
direction scales with the size of e, so we prefer small choices of e.

• Gen(1λ)→ (sk, pk). In practice, we usually take the
bitlength of primes to be λ = 1024
or λ = 2048.– Sample two random λ-bit primes p and q such that

p ≡ q ≡ 5 (mod 6). Standard RSA implementations require
the weaker condition that p ≡ q ≡
2 mod 3. Using the stronger condition
here simplifies the inversion algorithm.

– Set N ← p · q.

– Output sk← (p, q), and pk = N.

• F(pk = N, x)→ y.

– The input space for the RSA function is X = ZN =

{0, 1, 2, 3, . . . , N − 1}. To be completely precise, we should
write that the input space of the RSA
function is Z∗N , which is the set of
numbers in ZN that are relatively prime
to the modulus N. Since we only ever
sample random numbers from X , the
probability that a random sample from
ZN is not also in Z∗N is

1− |
Z∗N |
|ZN |

= 1− (p− 1)(q− 1)
N

= 1− N − p− q + 1
N

≤ p + q
N

≈ 2/
√

N

≈ 2−λ

which is negligible in the security
parameter λ. In other words, you are as
likely to hit one of these “bad” elements
as you are to guess a prime factor of N.

– Output y← x3 mod N.

Remark. The key-generation algorithm relies on us being able to
sample large random primes. We can sample a random λ-bit prime
by just picking random integers in the range [2λ, 2λ+1) until we find a
prime. We can test for primality in ≈ λ4 time using the Miller-Rabin
primality test. We also need that there are infinitely many primes
congruent to 5 mod 6, but fortunately there are.

Notice that computing the RSA function in the forward direction is
relatively fast: it just requires two multiplications modulo a 2048-bit
number N. In contrast, executing a Diffie-Hellman key exchange in
Z∗p requires hundreds of multiplications modulo a 2048-bit number,
depending on the order of the group.

Before describing the RSA inversion algorithm, we discuss why
the RSA trapdoor one-way permutation should be hard to invert
without the secret key.

Why should the RSA function be hard to invert?

To invert the RSA function, the attacker’s is effectively given a value
y ←R ZN and must a value x such that x3 = y mod N. Or, put another
way, the attacker’s task is essentially the following:

• Given: A polynomial p(X) := X3 − y ∈ ZN [X], for y←R ZN .

• Find: A value x ∈ ZN such that p(x) = 0 ∈ ZN .



the rsa cryptosystem 7

So the attacker must find the root of a polynomial modulo a com-
posite integer N.

The premise of RSA-style cryptosystems is that we only know of
essentially two ways to find roots of polynomials modulo N:

• Factor N into primes and find a root modulo each of the
primes. (We will say more on this in a moment.) Since the

best algorithms for factoring run in time roughly 2
3
√

log N =

2
3√λ, this approach is infeasible at present without knowing

the factorization of N.

• Find a root over the integers and reduce it modulo N. For Actually, it suffices to find a root
over the rational numbers, but the
distinction isn’t important here.

example, it is easy to find a root of polynomials such as:

X + 4 = 3 mod N,

X + 2Y = 5 mod N,

X2 = 9 mod N, and

X2 − 3x + 2 = (X− 2)(X− 1) = 3 mod N.

When y ←R ZN , the probability that y is a perfect cube, and There are many clever attacks for
solving polynomial equations modulo
composites that work in certain special
cases, but for most purposes these are
the two known attacks.

thus that there is an integral root to X3 − y, is 3
√

N/N ≈
2−4λ/3, which is negligible in the security parameter λ. So
solving this equation over the integers is a dead end.

Is inverting the RSA function as hard as factoring the modulus?
No one knows—the question has been open since the in-
vention of RSA. We do know that finding roots of certain
polynomial equations, such as p(X) := X2 − y mod N for
y ←R ZN is as hard as factoring the modulus N. But for RSA-
type polynomials, the answer is unclear.



the rsa cryptosystem 8

The RSA construction: Inverse direction

To understand how the inversion algorithm works, we need two
number-theoretic tools.

Number-theoretic preliminaries

Theorem 1 (Fermat’s Little Theorem). For every prime p and integer
a ∈ Z∗p, ap−1 = 1 (mod p).

Proof. Consider the sets Z∗p and {ax mod p | x ∈ Z∗p}. These sets are
equal, so the product of the elements in the two sets is equal:

(p− 1)! = ap−1(p− 1)! mod p ⇒ 1 = ap−1 mod p.

Lemma 2. If p is a prime congruent to 5 modulo 6, then for all a ∈ Z∗p, at

least one element r of {a
p+1

6 ,−a
p+1

6 } is such that r3 = a mod p.

Proof. First, observe that since p = 5 mod 6, (p + 1)/6 is an integer,
so exponentiation by (p + 1)/6 is well defined.

Let r = a
p+1

6 mod p. Then

r3 = (a
p+1

6 )3 = a
p+1

2 = a
p−1

2 a.

Since (a
p−1

2 )2 = 1 (by Fermat’s Little Theorem), a
p−1

2 ∈ {−1, 1},
so r3 mod p ∈ {−a, a}. If r3 = a mod p, we are done. Otherwise,
(−r)3 = −r3 = a mod p, and we are done.

The following theorem dates back to the second century B.C.E. [3],
and was used in the context of constructing calendars: Keith Conrad has nice lecture notes on

the Chinese Remainder Theorem, and
we draw our treatment of the theorem
from there.

Theorem 3 (Chinese Remainder Theorem (CRT)). Let p and q be dis-
tinct primes. For all integers a and b, the pair of congruences

x = a (mod p) and x = b (mod q)

has a unique and efficiently computable solution modulo pq.
The full theorem is more general—it
handles the case of more than two mod-
uli, and works when the moduli are
relatively prime (rather than primes).

One consequence of the CRT is that we can always represent an
element x ∈ ZN for N = pq, with p and q distinct primes, as pair
a pair (xp, xq) ∈ Zp × Zq. Adding and multiplying elements in
this “CRT representation” corresponds to adding and multiplying
elements modulo ZN .

So one implication of the CRT is that whenever we want to solve
a polynomial equation modulo N = pq, we can solve the problem
modulo p and modulo q, and then we can use the CRT to reconstruct
a solution modulo N. This idea shows up all over cryptography, so
it’s an important one to understand.

https://kconrad.math.uconn.edu/blurbs/ugradnumthy/crt.pdf


the rsa cryptosystem 9

Proof idea. One approach to proving the theorem is to define

p1 = p−1 (mod q) and q1 = q−1 (mod p).

Since p and q are distinct primes, such integers must exist. Then the We can compute p1 efficiently as
p1 = pq−2 mod q. By Fermat’s Little
Theorem, p1 · p = pq−1 = 1 mod q,
so p1 is the multiplicative inverse of p
modulo q as desired.

solution is:
x = aq1q + bp1 p (mod pq).

Notice that x = a mod p and x = b mod q.
The last part is to show uniqueness. One way to show that is to

argue that for any two solutions x, x′, their difference must be x −
x′ = 0 mod pq, which implies that they are congruent modulo pq.

Inverting the RSA function

With all of those preliminaries out of the way, we can now describe
how to invert the RSA function. All we have to do is to show how to
compute a cube root of y mod N. Our plan will be to compute a cube
root of y modulo the prime factors p and q of N individually, and
then reconstruct the solution modulo N.

• I(sk, y)→ x.

– Recall that the secret key sk consists of the factors of
N = pq. We want to solve: The standard way to describe RSA

inversion uses the extended Euclidean
algorithm. Since that algorithm requires
some time to describe, I went with this
simpler version.

x3 = y (mod p) and x3 = y (mod q).

– Use Lemma 2 to find the cube roots (xp, xq) of y
modulo (p, q).

– Then we need to solve:

x = xp (mod p) and x = xq (mod q).

Use the Chinese Remainder Theorem (Theorem 3) to
find an x ∈ ZN (where N = pq) that satisfies these
congruences.

– Return x.

To argue that x3 = y mod N: By construction, we have that
x3 = y mod p and x3 = y mod q. Since, by the Chinese Remainder
Theorem, there is a unique y ∈ ZN that satisfies these congruences,
we must have computed the cube root of the “right y” and we are
done.

Inversion is hard without knowing the factorization of N. The first step
of the inversion algorithm is to reduce the equation x3 = y mod N
modulo each of the prime factors of N. Without knowing the factors



the rsa cryptosystem 10

of N, it is not possible to execute this step. It could be that there
exists some other algorithm for computing cube roots modulo N
without having to compute it modulo each of the primes, but we
know of no such algorithm.

References

[1] Whitfield Diffie and Martin E. Hellman. New directions in cryp-
tography. IEEE Transactions on Information Theory, 22(6), 1976.

[2] Martin Gardner. A new kind of cipher that would take millions
of years to break. Scientific American, 237(8):120–124, 1977.

[3] Shen Kangsheng. Historical development of the Chinese Remain-
der Theorem. Archive for History of Exact Sciences, pages 285–305,
1988.

[4] Ralph C. Merkle. Secure communications over insecure channels.
Communications of the ACM, 21(4):294–299, 1978. See original
project report at https://www.ralphmerkle.com/1974/.

[5] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method
for obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21(2):120–126, 1978.

https://www.ralphmerkle.com/1974/

	Outline
	Background: RSA
	Trapdoor one-way permutations
	Applications of trapdoor OWPs
	The RSA construction: Forward direction
	The RSA construction: Inverse direction

