Today: Hash functions (Cont.)

- 1. Recap: Def and applications
- 2. Constructions: Sponge construction (SHA3)

See Section 8 in the Applied Cryptography book by Boneh-Damgard

Definition: A hash function $H: \{0,1\}^* \rightarrow \{0,1\}^k$ maps strings of arbitrary length to strings of length k.

A hash function is deterministic, efficient, and public (no secret keys).

Last class: We saw several applications:

- 1. Authenticating long files via a short hash
- 2. password storage
- 3. hash-&-sign
- 4. The Fiat-Shamir paradigm
- 5. commitment scheme

Application: Commitment Scheme

A commitment scheme is a digital analogue of a locked box. It is a randomized function $Com: M \times \{0,1\}^k \to C$ where M is the message space and C is the set of possible commitments.

It should satisfy the following two security requirements:

Statistical Binding: There do not exist distinct msgs $m_1, m_2 \in M$ and $r_1, r_2 \in \{0,1\}^k$ s.t.

$$Com(m_1, r_1) = Com(m_2, r_2)$$

Computational Hiding: For every $m_1, m_2 \in M$,

$$Com(m_1, r_1) \approx Com(m_2, r_2)$$

for random $r_1, r_2 \leftarrow \{0,1\}^k$

One can switch the requirements to require computational hiding and statistical binding:

Computational Binding: It is **computationally hard** to find distinct $m_1, m_2 \in M$ and $r_1, r_2 \in \{0,1\}^k$ s.t.

$$Com(m_1, r_1) = Com(m_2, r_2)$$

Statistical Hiding: For every $m_1, m_2 \in M$,

$$Com(m_1, r_1) \equiv Com(m_2, r_2)$$

for random $r_1, r_2 \leftarrow \{0,1\}^k$, where \equiv denotes statistical closeness

Definition: A family of distributions $\{D_k\}$ and $\{D'_k\}$ are **statistically close** if there exists a negligible function μ s.t. for any (all powerful) *A* and for every $k \in N$,

$$\Pr[A(x) = 1] - \Pr[A(x') = 1]| \le \mu(k)$$

where $x \leftarrow D_k$ and $x' \leftarrow D'_k$

Construction: Com(m, r) = H(m||r).

In the ROM this commitment scheme is statistically hiding, assuming $M = \{0,1\}^k$, and is computationally binding.

To get computational binding collision resistance suffices.

Constructions of hash functions: Common design

Step 1: Construct H_{small} : $\{0, 1\}^n \rightarrow \{0, 1\}^k$

for some $n \gg k$ (e.g., n = 2k and k = 256).

This step is an "engineering" step.

(Come up with a candidate, try to break it, come up with an improved candidate...)

Step 2: Use H_{small} to construct $H: \{0,1\}^* \rightarrow \{0,1\}^k$.

Implementing Step 2 using Merkle-Hash:

Suppose we are given H_{small} : $\{0,1\}^{2k} \rightarrow \{0,1\}^k$

The output contains the value of the root and the depth of this tree (i.e., the input length). **Padding:** We assume that the msg $x = (x_1, ..., x_t)$ is of length that is a multiple of $2^{\ell} \cdot k$ for some $\ell \in N$. If this is not the case, then pad x. Padding should be done carefully, to ensure that it is invertible. **Example:** $PAD(x) = (x, 1, 0^*)$.

Don't implement yourself!

Claim: If H_{small} is collision resistant then so is $H: \{0,1\}^* \to \{0,1\}^k$

"Proof": Suppose someone found a collision in H, i.e., found distinct x, y such that H(x) = H(y). Note that it must be that |x| = |y|. Note that the values of the root agree, since H(x) = H(y), whereas the values of the input layer differ since $x \neq y$. Consider the layer closest to the root s.t. the hashes corresponding to x differ from the hashes corresponding to y. These hash values can be used as collisions to H_{small} .

Alternative construction: Merkle-Damgard

Given H_{small} : $\{0,1\}^n \rightarrow \{0,1\}^k$ where n > k, compute $H: \{0,1\}^* \rightarrow \{0,1\}^k$ as follows:

Given $x \in \{0,1\}^*$, first pad x so that $|x| = t \cdot (n-k)$ for some $t \in N$. Partition $x = (x_1, \dots, x_t)$, where $|x_i| = n - k$

The initial value iv can be set to be the all zero string of size k.

Claim: If H_{small} is collision resistant then so is $H: \{0,1\}^* \to \{0,1\}^k$

"Proof": Similar to that of the Merkle hash construction.

This construction is not parallelizable (unlike Merkle hash)!

Constructing *H*_{small}

History:

1990/1991: First standardized construction: **MD4** and **MD5** by

Ron Rivest (MD = Message Digest).

It has a 128-bit output.

- **2007:** Broken in time 2^{24} .
- 1993: NSA designed hash function SHA1

(SHA = Secure Hash Algorithm)

It has a 160-bit output.

- **2017:** Broken in time 2^{63} .
- 2001: NSA designed SHA2

NIST Competitions: SHA3 (2015)

SHA2 is not broken and SHA3 was standardized to have a backup in case SHA2 breaks.

SHA3 – Sponge construction: (Section 8.8 in Boneh-Shoup Book)

Different than the MD5-like structure of SHA1 and SHA2.

The sponge construction is based on a permutation f.

It takes as input message of **arbitrary** length, and outputs a message of **arbitrary** length, while being "pseudorandom".

It is called a sponge since it absorbs any amount of data and squeezes out any amount of data.

r = rate, c = capacity. n = r + c.

Larger r implies better efficiency, larger c implies better security.

SHA3 is associated with a permutation $f: \{0,1\}^n \rightarrow \{0,1\}^n$ where n = r + c = 1600.

We will not describe f here, but it is engineered to look random. In the security analysis of SHA3 it is assumed to be an ideal random permutation.

To hash a message *m*:

First pad m so that its length is a multiple of r.

Let $m = (P_0, ..., P_{t-1})$, where $P_i \in \{0, 1\}^r$.

Abosorb all blocks P_i of a padded input string as follows:

- The initial state $S = (R, C) \in \{0,1\}^n$ is initialized to zero
- For each block P_i
 - Replace R with $R \oplus P_i$ and update S = (R, C).
 - Replace *S* with *f*(*S*)

The sponge function output is now ready to be produced ("squeezed out") as follows:

- Repeat
 - Output the *R* portion of *S*
 - *S* is replaced by *f*(*S*) unless the output is full

The permutation f chosen in SHA3 is the Keccak permutation,

which sets n = 1600 (where recall that n is the input and output lengths of f. (We will not describe f here.)

It has several possible settings for r and c, depending on the security and efficiency tradeoffs that are desired.

Example: SHA3(256) takes c = 512 and r = 1088. It has a fixed output length of 256 bits.

There are other SHA3 instantiations with different parameter settings and with variable input length.