
Today:  Hash functions (Cont.)

1. Recap:  Def and applications

2. Constructions:  Sponge construction (SHA3)

See Section 8 in the Applied Cryptography book by Boneh-Damgard

Definition:  A hash function 𝐻: 0,1 ∗ → 0,1 𝑘 maps strings of 

arbitrary length to strings of length 𝑘.

A hash function is deterministic, efficient, and public 

(no secret keys). 

Last class:  We saw several applications:  

1.  Authenticating long files via a short hash

2.  password storage

3.  hash-&-sign

4.  The Fiat-Shamir paradigm

5.  commitment scheme 



Application:  Commitment Scheme 

A commitment scheme is a digital analogue of a locked box.

It is a randomized function 𝐶𝑜𝑚:𝑀 × 0,1 𝑘 → 𝐶

where 𝑀 is the message space and 𝐶 is the set of possible 

commitments.

It should satisfy the following two security requirements:

Statistical Binding:  There do not exist  distinct msgs 𝑚1, 𝑚2 ∈ 𝑀

and 𝑟1, 𝑟2 ∈ 0,1 𝑘 s.t.

𝐶𝑜𝑚 𝑚1, 𝑟1 = 𝐶𝑜𝑚(𝑚2, 𝑟2)

Computational Hiding: For every 𝑚1, 𝑚2 ∈ 𝑀,

𝐶𝑜𝑚 𝑚1, 𝑟1 ≈ 𝐶𝑜𝑚 𝑚2, 𝑟2

for random 𝑟1, 𝑟2 ← 0,1 𝑘

One can switch the requirements to require computational hiding 

and statistical binding:



Construction: 𝑪𝒐𝒎 𝒎, 𝒓 = 𝑯(𝒎| 𝒓 .

In the ROM this commitment scheme is statistically hiding, assuming

𝑀 = 0,1 𝑘 , and is computationally binding.

To get computational binding collision resistance suffices. 

Computational Binding:  It is computationally hard to find distinct 𝑚1, 𝑚2 ∈ 𝑀

and  𝑟1, 𝑟2 ∈ 0,1 𝑘 s.t.

𝐶𝑜𝑚 𝑚1, 𝑟1 = 𝐶𝑜𝑚(𝑚2, 𝑟2)

Statistical Hiding: For every 𝑚1, 𝑚2 ∈ 𝑀,

𝐶𝑜𝑚 𝑚1, 𝑟1 ≡ 𝐶𝑜𝑚 𝑚2, 𝑟2

for random 𝑟1, 𝑟2 ← 0,1 𝑘, where ≡ denotes statistical closeness

Definition:  A family of distributions {𝐷𝑘} and {𝐷𝑘
′ } are statistically 

close if there exists a negligible function 𝜇 s.t. for any (all powerful) 

𝐴 and for every k ∈ 𝑁,

Pr 𝐴 𝑥 = 1 − Pr[𝐴 𝑥′ = 1]| ≤ 𝜇(𝑘)

where 𝑥 ← 𝐷𝑘 and 𝑥′ ← 𝐷𝑘
′



Constructions of hash functions:  Common design

Step 1: Construct  𝑯𝒔𝒎𝒂𝒍𝒍: 𝟎, 𝟏
𝒏 → 𝟎, 𝟏 𝒌

for some 𝑛 ≫ 𝑘 (e.g.,  𝑛 = 2𝑘 and 𝑘 = 256).

This step is an “engineering” step.

(Come up with a candidate, try to break it, come up with
an improved candidate…)

Step 2: Use 𝐻𝑠𝑚𝑎𝑙𝑙 to construct 𝐻: 0,1 ∗ → 0,1 𝑘.

Implementing Step 2 using Merkle-Hash:

Suppose we are given 𝐻𝑠𝑚𝑎𝑙𝑙: 0,1
2𝑘 → 0,1 𝑘

𝑥1 𝑥2 𝑥3 𝑥4

𝐻𝑠𝑚𝑎𝑙𝑙 𝐻𝑠𝑚𝑎𝑙𝑙

𝐻𝑠𝑚𝑎𝑙𝑙

The output contains 
the value of the root 
and the depth of this 
tree (i.e., the input 
length).



Padding:  We assume that the msg 𝑥 = (𝑥1, … , 𝑥𝑡) is of length that 

is a multiple of 2ℓ ⋅ 𝑘 for some ℓ ∈ 𝑁.

If this is not the case, then pad 𝑥.

Padding should be done carefully, to ensure that it is invertible.

Example: 𝑃𝐴𝐷 𝑥 = 𝑥, 1,0∗ .

Don’t implement yourself!

Claim:  If 𝐻𝑠𝑚𝑎𝑙𝑙 is collision resistant then so is 𝐻: 0,1 ∗ → 0,1 𝑘

“Proof”:  Suppose someone found a collision in 𝐻, i.e., found distinct 

𝑥, 𝑦 such that 𝐻 𝑥 = 𝐻 𝑦 . Note that it must be that 𝑥 = 𝑦 .

Note that the values of the root agree, since 𝐻 𝑥 = 𝐻 𝑦 , whereas

the values of the input layer differ since 𝑥 ≠ 𝑦.

Consider the layer closest to the root s.t. the hashes corresponding 

to 𝑥 differ from the hashes corresponding to 𝑦.

These hash values can be used as collisions to 𝐻𝑠𝑚𝑎𝑙𝑙.



Alternative construction:  Merkle-Damgard

Given 𝐻𝑠𝑚𝑎𝑙𝑙: 0,1
𝑛 → 0,1 𝑘 where 𝑛 > 𝑘, compute 

𝐻: 0,1 ∗ → 0,1 𝑘 as follows:

Given 𝑥 ∈ 0,1 ∗, first pad 𝑥 so that 𝑥 = 𝑡 ⋅ 𝑛 − 𝑘 for some 

t ∈ 𝑁. Partition 𝑥 = 𝑥1, … , 𝑥𝑡 , where 𝑥𝑖 = 𝑛 − 𝑘

𝐻𝑠𝑚𝑎𝑙𝑙

𝑥1 𝑥2

𝐻𝑠𝑚𝑎𝑙𝑙𝑖𝑣 𝐻𝑠𝑚𝑎𝑙𝑙

𝑥3

The initial value 𝑖𝑣 can be set to be the all zero string of size 𝑘.

Claim:  If 𝐻𝑠𝑚𝑎𝑙𝑙 is collision resistant then so is 𝐻: 0,1 ∗ → 0,1 𝑘

“Proof”:  Similar to that of the Merkle hash construction.

This construction is not parallelizable (unlike Merkle hash)!



Constructing 𝑯𝒔𝒎𝒂𝒍𝒍

History:

1990/1991: First standardized construction: MD4 and  MD5 by

Ron Rivest (MD = Message Digest).

It has a 128-bit output.  

2007:  Broken in time 𝟐𝟐𝟒.

1993:  NSA designed hash function SHA1  

(SHA = Secure Hash Algorithm)

It has a 160-bit output.  

2017:  Broken in time 𝟐𝟔𝟑.

2001:  NSA designed SHA2

NIST Competitions:  SHA3 (2015)

SHA2 is not broken and SHA3 was standardized to have a backup

in case SHA2 breaks.  



SHA3 – Sponge construction:  (Section 8.8 in Boneh-Shoup Book)

Different than the MD5-like structure of SHA1 and SHA2.

The sponge construction is based on a permutation 𝑓.

It takes as input message of arbitrary length, and outputs a 

message of arbitrary length, while being “pseudorandom”.

It is called a sponge since it absorbs any amount of data and 

squeezes out any amount of data.

𝑟 = rate, 𝑐 = capacity.  𝑛 = 𝑟 + 𝑐.

Larger 𝑟 implies better efficiency, larger 𝑐 implies better security.



SHA3 is associated with a permutation 𝑓: 0,1 𝑛 → 0,1 𝑛

where n = 𝑟 + 𝑐 = 1600.

We will not describe 𝑓 here, but it is engineered to look random.

In the security analysis of SHA3 it is assumed to be an ideal random 

permutation.  

To hash a message 𝒎:

First pad 𝑚 so that its length is a multiple of 𝑟.

Let 𝑚 = (𝑃0, … , 𝑃𝑡−1), where 𝑃𝑖 ∈ 0,1 𝑟 .

Abosorb all blocks 𝑃𝑖 of a padded input string as follows:

• The initial state 𝑆 = (𝑅, 𝐶) ∈ 0,1 𝑛 is initialized to zero

• For each block 𝑃𝑖

• Replace 𝑅 with 𝑅 ⊕𝑃𝑖 and update 𝑆 = 𝑅, 𝐶 .

• Replace 𝑆 with f(S)

The sponge function output is now ready to be produced

("squeezed out") as follows:

• Repeat
• Output the R portion of S

• S is replaced by f(S) unless the output is full



The permutation 𝑓 chosen in SHA3 is the Keccak permutation, 

which sets 𝑛 = 1600 (where recall that 𝑛 is the input and output 

lengths of 𝑓.  (We will not describe 𝑓 here.)

It has several possible settings for 𝑟 and 𝑐, depending on the 

security and efficiency tradeoffs that are desired.  

Example:  SHA3(256) takes 𝑐 = 512 and 𝑟 = 1088. It has a fixed 

output length of 256 bits.

There are other SHA3 instantiations with different parameter 

settings and with variable input length.
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