Today: Hash functions (Cont.)

1. Recap: Def and applications

2. Constructions: Sponge construction (SHA3)

See Section 8 in the Applied Cryptography book by Boneh-Damgard

Definition: A hash function H: {0,1}* = {0,1}* maps strings of

arbitrary length to strings of length k.

A hash function is deterministic, efficient, and public

(no secret keys).

Last class: We saw several applications:

1. Authenticating long files via a short hash
2. password storage

3. hash-&-sign

4. The Fiat-Shamir paradigm

5. commitment scheme

Application: Commitment Scheme

A commitment scheme is a digital analogue of a locked box.
It is a randomized function Com: M x {0,1}¢ —» C

where M is the message space and C is the set of possible
commitments.

It should satisfy the following two security requirements:

Statistical Binding: There do not exist distinct msgs m;,m, € M
and 14,7, € {0,1}" st.

Com(my, 1) = Com(my,13)

Computational Hiding: For every m{,m, € M,
Com(my, 1) = Com(my,1;)

for random 1y, 7, < {0,1}*

One can switch the requirements to require computational hiding

and statistical binding:

Computational Binding: It is computationally hard to find distinct m{, m, € M
and 14,75 € {0,1}% s.t.

Com(mq, 1) = Com(my, 1)

Statistical Hiding: For every my, m, € M,
Com(mq, 1) = Com(m,,1,)

for random ry, 7, « {0,1}*, where = denotes statistical closeness

Definition: A family of distributions {D;} and {D;} are statistically
close if there exists a negligible function u s.t. for any (all powerful)
A and for everyk € N,

Pr[A(x) = 1] — Pr[A(x") = 1]| < u(k)

where x « Dy and x" « Dy,

Construction: Com(m,r) = H(m||r).

In the ROM this commitment scheme is statistically hiding, assuming

M = {0,1}*, and is computationally binding.

To get computational binding collision resistance suffices.

Constructions of hash functions: Common design

Step 1: Construct Hgqp: {0, 11" - {0, 1}F
forsomen > k (e.g., n = 2k and k = 256).

This step is an “engineering” step.

(Come up with a candidate, try to break it, come up with
an improved candidate...)

Step 2: Use Hg,,qy to construct H:{0,1}* — {0,1}%.

Implementing Step 2 using Merkle-Hash:

Suppose we are given Hgp,qy:10,1}2% - {0,1}%

small

/ \ The output contains
the value of the root

Hsmai Hsmau and the depth of this

/\ /\ tree (i.e., the input
length).

X2 X4

Padding: We assume that the msg x = (x4, ..., x¢) is of length that
is a multiple of 2¢ - k for some £ € N.

If this is not the case, then pad x.

Padding should be done carefully, to ensure that it is invertible.

Example: PAD(x) = (x,1,0%).

Don’t implement yourself!

Claim: If H,,;; is collision resistant then so is H:{0,1}* — {0,1}*

“Proof”: Suppose someone found a collision in H, i.e., found distinct
x,y such that H(x) = H(y). Note that it must be that x| = |y|.
Note that the values of the root agree, since H(x) = H(y), whereas
the values of the input layer differ since x # y.

Consider the layer closest to the root s.t. the hashes corresponding
to x differ from the hashes corresponding to y.

These hash values can be used as collisions to Hgy,, 411

Alternative construction: Merkle-Damgard
Given Hgpgy: 10,1} = {0,1}* where n > k, compute
H:{0,1}* - {0,1}* as follows:

Given x € {0,1}", first pad x so that |x| =t - (n — k) for some

t € N. Partition x = (x, ..., x¢), Where |x;| =n — k

v _— Hsmall ’ Hsmall ' Hsmall

| I |

X1 X2 X3

The initial value iv can be set to be the all zero string of size k.

Claim: If Hg,, 4 is collision resistant then so is H: {0,1}* — {0,1}*

“Proof”: Similar to that of the Merkle hash construction.

This construction is not parallelizable (unlike Merkle hash)!

Constructing H ¢, 411

History:

1990/1991.: First standardized construction: MD4 and MD5 by
Ron Rivest (MD = Message Digest).

It has a 128-bit output.

2007: Broken in time 2%%,

1993: NSA designed hash function SHA1

(SHA = Secure Hash Algorithm)

It has a 160-bit output.

2017: Broken in time 2°3.

2001: NSA designed SHA2

NIST Competitions: SHA3 (2015)

SHA2 is not broken and SHA3 was standardized to have a backup
in case SHA2 breaks.

SHAS3 - Sponge construction: (Section 8.8 in Boneh-Shoup Book)

Different than the MD5-like structure of SHA1 and SHA2.

The sponge construction is based on a permutation f.

It takes as input message of arbitrary length, and outputs a

message of arbitrary length, while being “pseudorandom”.

It is called a sponge since it absorbs any amount of data and

squeezes out any amount of data.

absorbing | squeezing

P P; Pt | Zo Z
|
[Lm Lm #m : T B L/\
rilo > —> > > > —>
X :
|
f f f : f f
ClIOF— > > > — > > - | >
|
|
v _/ _/ _/ : _/ N

r =rate, ¢ =capacity. n =71 + c.

Larger r implies better efficiency, larger ¢ implies better security.

SHAS3 is associated with a permutation f: {0,1}" — {0,1}"

wheren =71 + ¢ = 1600.

We will not describe f here, but it is engineered to look random.

In the security analysis of SHA3 it is assumed to be an ideal random

permutation.

To hash a message m:
First pad m so that its length is a multiple of r.

Let m = (P, ..., P,_1), where P; € {0,1}".

Abosorb all blocks P; of a padded input string as follows:
* The initial state S = (R, C) € {0,1}" is initialized to zero
* For each block P;

* Replace R with R @ P; and update S = (R, C).

* Replace S with f(S)

The sponge function output is now ready to be produced

("squeezed out") as follows:

* Repeat
e Qutput the R portion of S

* Sisreplaced by f(S) unless the output is full

The permutation f chosen in SHA3 is the Keccak permutation,
which sets n = 1600 (where recall that n is the input and output
lengths of f. (We will not describe f here.)

It has several possible settings for r and ¢, depending on the
security and efficiency tradeoffs that are desired.

Example: SHA3(256) takes ¢ = 512 and r = 1088. It has a fixed
output length of 256 bits.

There are other SHA3 instantiations with different parameter

settings and with variable input length.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

