Today: Hash functions (Cont.)

1. Recap: Def and applications
2. Constructions: Sponge construction (SHA3)

See Section 8 in the Applied Cryptography book by Boneh-Damgard

Definition: A hash function $H:\{0,1\}^{*} \rightarrow\{0,1\}^{k}$ maps strings of arbitrary length to strings of length k.

A hash function is deterministic, efficient, and public (no secret keys).

Last class: We saw several applications:

1. Authenticating long files via a short hash
2. password storage
3. hash-\&-sign
4. The Fiat-Shamir paradigm
5. commitment scheme

Application: Commitment Scheme

A commitment scheme is a digital analogue of a locked box.
It is a randomized function Com: $M \times\{0,1\}^{k} \rightarrow C$
where M is the message space and C is the set of possible commitments.

It should satisfy the following two security requirements:
Statistical Binding: There do not exist distinct msgs $m_{1}, m_{2} \in M$ and $r_{1}, r_{2} \in\{0,1\}^{k}$ s.t.

$$
\operatorname{Com}\left(m_{1}, r_{1}\right)=\operatorname{Com}\left(m_{2}, r_{2}\right)
$$

Computational Hiding: For every $m_{1}, m_{2} \in M$,

$$
\operatorname{Com}\left(m_{1}, r_{1}\right) \approx \operatorname{Com}\left(m_{2}, r_{2}\right)
$$

for random $r_{1}, r_{2} \leftarrow\{0,1\}^{k}$

One can switch the requirements to require computational hiding and statistical binding:

Computational Binding: It is computationally hard to find distinct $m_{1}, m_{2} \in M$ and $r_{1}, r_{2} \in\{0,1\}^{k}$ s.t.

$$
\operatorname{Com}\left(m_{1}, r_{1}\right)=\operatorname{Com}\left(m_{2}, r_{2}\right)
$$

Statistical Hiding: For every $m_{1}, m_{2} \in M$,

$$
\operatorname{Com}\left(m_{1}, r_{1}\right) \equiv \operatorname{Com}\left(m_{2}, r_{2}\right)
$$

for random $r_{1}, r_{2} \leftarrow\{0,1\}^{k}$, where \equiv denotes statistical closeness

Definition: A family of distributions $\left\{D_{k}\right\}$ and $\left\{D_{k}^{\prime}\right\}$ are statistically close if there exists a negligible function μ s.t. for any (all powerful) A and for every $\mathrm{k} \in N$,

$$
\operatorname{Pr}[A(x)=1]-\operatorname{Pr}\left[A\left(x^{\prime}\right)=1\right] \mid \leq \mu(k)
$$

where $x \leftarrow D_{k}$ and $x^{\prime} \leftarrow D_{k}^{\prime}$

Construction: $\operatorname{Com}(\boldsymbol{m}, r)=\boldsymbol{H}(\boldsymbol{m} \| r)$.

In the ROM this commitment scheme is statistically hiding, assuming $M=\{0,1\}^{k}$, and is computationally binding.

To get computational binding collision resistance suffices.

Constructions of hash functions: Common design

Step 1: Construct $\boldsymbol{H}_{\text {small }}\{\mathbf{0}, \mathbf{1}\}^{\boldsymbol{n}} \rightarrow\{\mathbf{0}, \mathbf{1}\}^{\boldsymbol{k}}$
for some $n \gg k$ (e.g., $n=2 k$ and $k=256$).
This step is an "engineering" step.
(Come up with a candidate, try to break it, come up with an improved candidate...)

Step 2: Use $H_{\text {small }}$ to construct $H:\{0,1\}^{*} \rightarrow\{0,1\}^{k}$.

Implementing Step 2 using Merkle-Hash:

Suppose we are given $H_{\text {small }}:\{0,1\}^{2 k} \rightarrow\{0,1\}^{k}$

The output contains the value of the root and the depth of this tree (i.e., the input length).

Padding: We assume that the $\operatorname{msg} x=\left(x_{1}, \ldots, x_{t}\right)$ is of length that is a multiple of $2^{\ell} \cdot k$ for some $\ell \in N$.

If this is not the case, then pad x.
Padding should be done carefully, to ensure that it is invertible.
Example: $\operatorname{PAD}(x)=\left(x, 1,0^{*}\right)$.
Don't implement yourself!

Claim: If $H_{\text {small }}$ is collision resistant then so is $H:\{0,1\}^{*} \rightarrow\{0,1\}^{k}$
"Proof": Suppose someone found a collision in H, i.e., found distinct x, y such that $H(x)=H(y)$. Note that it must be that $|x|=|y|$.

Note that the values of the root agree, since $H(x)=H(y)$, whereas the values of the input layer differ since $x \neq y$.

Consider the layer closest to the root s.t. the hashes corresponding to x differ from the hashes corresponding to y.

These hash values can be used as collisions to $H_{\text {small }}$.

Alternative construction: Merkle-Damgard

Given $H_{\text {small }}:\{0,1\}^{n} \rightarrow\{0,1\}^{k}$ where $n>k$, compute $H:\{0,1\}^{*} \rightarrow\{0,1\}^{k}$ as follows:

Given $x \in\{0,1\}^{*}$, first pad x so that $|x|=t \cdot(n-k)$ for some $\mathrm{t} \in N$. Partition $x=\left(x_{1}, \ldots, x_{t}\right)$, where $\left|x_{i}\right|=n-k$

The initial value $i v$ can be set to be the all zero string of size k.

Claim: If $H_{\text {small }}$ is collision resistant then so is $H:\{0,1\}^{*} \rightarrow\{0,1\}^{k}$
"Proof": Similar to that of the Merkle hash construction.

This construction is not parallelizable (unlike Merkle hash)!

Constructing $\boldsymbol{H}_{\text {small }}$

History:

1990/1991: First standardized construction: MD4 and MD5 by
Ron Rivest (MD = Message Digest).
It has a 128-bit output.
2007: Broken in time 2^{24}.
1993: NSA designed hash function SHA1
(SHA = Secure Hash Algorithm)
It has a 160-bit output.
2017: Broken in time $\mathbf{2}^{63}$.

2001: NSA designed SHA2
NIST Competitions: SHA3 (2015)
SHA2 is not broken and SHA3 was standardized to have a backup in case SHA2 breaks.

SHA3 - Sponge construction: (Section 8.8 in Boneh-Shoup Book)

Different than the MD5-like structure of SHA1 and SHA2.

The sponge construction is based on a permutation f.

It takes as input message of arbitrary length, and outputs a message of arbitrary length, while being "pseudorandom".

It is called a sponge since it absorbs any amount of data and squeezes out any amount of data.

$r=$ rate,$\quad c=$ capacity. $n=r+c$.
Larger r implies better efficiency, larger c implies better security.

SHA3 is associated with a permutation $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ where $\mathrm{n}=r+c=1600$.

We will not describe f here, but it is engineered to look random.
In the security analysis of SHA3 it is assumed to be an ideal random permutation.

To hash a message \boldsymbol{m} :

First pad m so that its length is a multiple of r.
Let $m=\left(P_{0}, \ldots, P_{t-1}\right)$, where $P_{i} \in\{0,1\}^{r}$.
Abosorb all blocks P_{i} of a padded input string as follows:

- The initial state $S=(R, C) \in\{0,1\}^{n}$ is initialized to zero
- For each block P_{i}
- Replace R with $R \oplus P_{i}$ and update $S=(R, C)$.
- Replace S with $f(S)$

The sponge function output is now ready to be produced
("squeezed out") as follows:

- Repeat
- Output the R portion of S
- S is replaced by $f(S)$ unless the output is full

The permutation f chosen in SHA3 is the Keccak permutation, which sets $n=1600$ (where recall that n is the input and output lengths of f. (We will not describe f here.)

It has several possible settings for r and c, depending on the security and efficiency tradeoffs that are desired.

Example: SHA3(256) takes $c=512$ and $r=1088$. It has a fixed output length of 256 bits.

There are other SHA3 instantiations with different parameter settings and with variable input length.

