Lecture 10: Digital Signature

MIT - 6. 5610 Spring 2023 Henry Carigan-Gibbs

Plan * Recap: Schnorr's ID Protocol La Extensions (?) * Defn: Digital Sigs * Break	Logistics * Ask us re: teem membliship (Friday!) * Pset 2 due Friday * Anon feedback!			
* Schnorr signatures (ECDSA,) * Eat-Shamir Heuristic				
* Cert.s. cates				
	. .			

ZK Proof of Knowledge Kecop : $R \leq 50,13^{*} \neq 50,13^{*}$ witness statement e.y. $R_{6,3} = \{(x, g^*) : x \in \mathbb{Z}_{2}\}$ for $G = \{9, 9^2, \dots, 9^2\}$ Relation P(x,y)V(y) . d ncc/réj Properties 2. Completeness V (x,y) & R < P, V > (x, y) = 1a. knowledge Soundrogs $\exists iff \in s.t. \forall y \forall P^*$ $P_{\tau}\left[(x,y) \in \mathbb{R}^{t} \times - E^{t}(y)\right] \geq P_{\tau}\left[\langle P^*, V \rangle(\cdot,y) = 1\right] - E$ sound to the second sCheaty P* convinces horust V Can extract utress from P* Intuition for extraction 3. HVZ/L J ef Sim 5.t. V (x,y) ∈ R {transcript of } \subseteq {Sim(y) } Can Simulate interaction (PC->V on (x,y) } \subseteq {Sim(y) } Can Simulate interaction without knowing iteress

Schnorr Ek Pol for Dlog P(*,g*) $V(y=g^{*})$ (Commitnent) r i Zgr t=g6G ce Da c (chillery) Accept iff g^e= t·y^c Z+ (+cx € Zq Z (response) Completeners, knowledge. Showed last time: For simplicity assume: Pr[<p, v>(y)=1]=1. Extractor $E(y) := \operatorname{Run} P^* \rightarrow (+, c, z)$ Rewind P^* to point before serving (Run $P^* \rightarrow (f, c', z')$) Extract dlog(y) as in last lecture $X = \frac{2-2}{C-C} \in \mathbb{Z}_q$ Showing that E succeeds often requires a bit of work ...

Schnorr Analysis Now: HV2K. Need to Construct Sim $Sm(y=g^{\star}):$ $c, z \in \mathbb{Z}_{q}$ $t < g^{2}, y^{2} \in G$ output (E, C, Z) Chim: $\{real \neq on (x, y)\} \equiv \{Sim(y)\}$ - For each (c, ?) in real I exhibly one f, oquiproboble () Exactly the same in simulation.

Extensions: "OR" Protocols P can convince V that it knows 1 of A dlogs Idea: Run n signa protocols in parallel. P can "cheart" on at most one of them 9.= P(x;) $V(g^{x_1}, g^{x_2})$, g`') For ist, ..., n $(t_i, c_i, z_i) \leftarrow Sim(y_i)$ r;* = Zr t;* = gr;* £.,..., t_n Choose c = Rg ci* s.t. $C_{i}^{*} + \sum_{\substack{i=1\\i\neq i}}^{n} C_{i} = c \in \mathbb{Z}_{q}$ Z, * = r * + C * X 2 22 For all ie {1,..., n] 2. ;..., 2n $g^{Z_1} = t \cdot y^{C_1}$ Given two acapting tro, argue that I it s.t. c * + c'* => Can entract at least one dlog.

Digital Signatures * Public-key version of a MAC. * Used everywhere! HTTPS, s/w update, sst, VPN, enc. msg, Sign(sk,m)>5 SK pk O T O L m, **5** modify mig Ver. 5y (pk, m, 0) > ??!? Versiar should detect tampening by advesary App: Authenticated DH Ky Exchange & Used in practice SKAI: CA PK BOD SLBOD ĝ, Ja pkalia T) / 9,0, Q: Where bes Alice jet pleBob? 4 Did we just more the problem around

Digital Sigs: Defn
Msg space M. Three eff algs:
$Gen(1^n) \rightarrow (sk, pk)$
$Sign(sk,m) \rightarrow \sigma$
$VeriSy(pk, m, \sigma) \rightarrow So, 13$
Corre itvess:
V (sk.pk) = Gen(1 ²) V mGM
Ver(pk, m, Sign(sk, m)) = 1
Security: Existential unforgenbility under chosen my attack
Security: Existential unforgenbility under chosen MSg attack Vof Nu A I regi Sn St. A's advantage in (EUF-(MA)
Security: Existential unforgenbility under chosen MSg attack VCG NUA I real Sh St. A's advantage in following game is ngli. Chal
(hal)
$(sk, pk) \notin Gen() \xrightarrow{pk}$
(hal)
$\frac{(sk,Pk)}{(sk,Pk)} \leftarrow \frac{pk}{(sk,Pk)} \leftarrow \frac{m}{(sk,Pk)}$
$\frac{(sk,Pk)}{(sk,Pk)} \leftarrow \frac{pk}{(sk,Pk)} \leftarrow \frac{m}{(sk,Pk)}$

J	Votes .	on Sec	Def		· · · ·	· · · · ·	· · · · · ·	· · · ·
	* Stron	ng: - Adv - Can	sce.s forge	5:55 5:55	cny n	~sq		
· · · ·	דט8 ∗	- admits (m,0)	scher can	gerer	n wi tæ (m	$(, \sigma')$	zinen	· · · · ·
					Ne	w sig or		
			• • • •	• • • •				
				• • • •				
			• • • •	• • • •		• • • •		
				• • • •				

Constructing Disital Sigs Many nice ways to do it! * From OWF (Lamport, ...) * Trapdoor OWF (RSA) * Pok protocol + OWF (Schnorr, ...) Le will see this one. * On Internet today, Schnorr-like schenes common (Why * RSA less & bess common - longer sigs & pt (256R vs 32/64) * PQ schenes coming Basic idea of Schnorr sig * Take interactive Sigma protocol & Make it non interactive. * Proof of knowledge of sk becomes sig Ly liboerer generated pf must know sk * Bind message to be spred in these somewhere

Back to Schnorr $P(\star,g^{\star})$ $V(y=g^{x})$ (commitment) r & Zgr £=96G c (challerge) C← Hash(g^x, t) Acapt ff g²=ty 2 - C+CXE Rq Z (reis poinse) * Ed2ssig, much the same Schnorr Signatures * EC-DSA same idea but tweated to avoid patents Signature schene is almost the same, except w/ msg hashed in when computing challenge. Ver(pk=g^x, o, m) Sign(sk =x) $r \in \mathbb{Z}_q$ CG Hash(g*, E, m) G=(K,c,Z) $C \leftarrow H(s^{\times}, t, m)$ Accept if $g^2 = + y^c$ 2+r+cx E Rg Optimized Site gz, y= " Kengen just generates Jlag instance (Accept if c= Hash(g', f') Gen() = x & Za return (x,g*)

What about security? -> We converted an interactive to Using a hash fr. a non-interactive one "Fiat-Shamir heuristic" -> For which choices of hash for H does this transformation preserve security of the undulying scheme. La More later ... Two approaches: [Different views of same thing?] 1. Make new assumption Plug in "reasonable" crypto hash Sn (e.g. SHA2) and assume that the resulting sig scheme is secure (> Not & elegent? But prognatic 2. Change the model of computation "Random-orade model" [BR93] SAssume that all parties have (only) orade access to a true random hash fr. (TI) y=H(x)

More on Random - Oracle Model (Rom?) Inf Thm: IS Schnorr is secure ID schene against eavesdropping attacks, Schnorr sig schene is secure sig schene (EUF-CMA), provided that we model book for Ho as R.O. Why does R.O.M. help argue security? Intuition: In Schnur ID schene Cheating P* really cannut predict what the challenge will be! Technically: Even in Non-interactive setting Can extract dlog from cheating prover Pt $r \in R_q$ teg $f c' \ll H(g^{\times}, t, m)$ $\leftarrow H(g^{\times}, t, m) -$ + z'er + cx e Ila Z < rucx & Rg Can extract by "Changing our Mind" about value of H() tine

Pub key infrastructure Cortificates & PKI PRALICE ⇒ Ç Where does Bob get Alice's pk? Many options. All bad in their own way. Nane as Pk, as in Bitcoin, Tor hidden sucs + Solves ple dist problem - Lose key? Renember? Trust on first use, as in SSH, Signal, What App + Simple, intuitive, effective? - No protention on 1st msg, key changes? 3. Certificates, used in TLS (HTTPS in your browser, etc.) + Scales well, no online CA interaction - Validation weak, lost key?, "weakest link" security (compromising are CA is enough to gaze any" art) CA == Sign(Sk, ("Alice", pkalice)) skca How does CA know its talking to Alice? skalice S Alice", pkalice, of Alice", pkalice, of Alice of the shift of the s phere Ships u/ OS Or browser or crypto 116.