Lecture 10: $D_{i g: t a l}$ Signatures

MIT - 6. 5610
Spring 2023
Henry Corrigan-Gibbs

Plan

* Recap Schnorr's ID Protocol \rightarrow Extensions (?)
* Defn Digital Jigs
* Break
* Schrior signatures (ECDSA,...)
* Fiat-Shamir Heuristic
* Certificates

Logistics
*Ask us re: team membership (Friday!)

* Pet a due friday
* Anon feedback!

Recap: Bk Proof of knowledge

Properties

1. Completeness $\forall(x, y) \in R \quad\langle P, V\rangle(x, y)=1$.
2. Knowledge Soundness \exists iff E s.t. $\forall y \forall P$

Intuition for extraction
3. $H V z k$ eff S_{m} st $\forall(x, y) \in R$

Schnorr: Ak Pol for Dog

Showed last time: Completeness, knowledge.

For simplicity assume: $\operatorname{Pr}\left[\left\langle p^{*}, v\right\rangle(y)=1\right]=1$.
Extractor $E^{*}(y):=\operatorname{Rum} P^{*} \rightarrow(t, c, z)$
Rewind P^{*} to point before syndics

$$
\operatorname{Run}_{n} P^{*} \rightarrow\left(t, c^{\prime}, z^{\prime}\right)
$$

Extract $\operatorname{dog}_{y}(y)$ is in last lecture

$$
x=\frac{z-z^{\prime}}{c-c} \in \mathbb{Z}_{q}
$$

Showing that E succeeds often requires a bit of work...

Schnorr: Analysis
Now: HVZK.. Ned to construct Sim

$$
\begin{aligned}
& \operatorname{Sin}\left(y=g^{x}\right): \\
& c, z \in \mathbb{Z}_{q} \\
& t \leftarrow g^{z} \cdot y^{-c} \in \mathbb{G} \\
& \text { output }(\epsilon, c, z)
\end{aligned}
$$

Claim: $\{$ real to on $(x, y)\} \equiv\{\operatorname{Sim}(y)\}$

- For each (c, z) in real \exists exactly one t, G Equiprobable Exactly the same in simulation.

Extensions: "OR" Protocols
P can convince V that it knows 1 of n dogs
Thea: Run n sigma protocols in parallel. P can "cheat" on at most ore if them

$$
\begin{aligned}
& \frac{P\left(x_{i}^{*}\right)}{\text { For } i=1, \ldots, n} \\
& \left(t_{i}, c_{i}, z_{i}\right) \leftarrow \operatorname{Sim}\left(y_{i}\right) \\
& r_{; *} \Perp \mathbb{Z}_{2} \\
& t_{i^{*}} \approx g^{r_{i}^{*}}
\end{aligned}
$$

Choose

$$
\begin{aligned}
& c_{i}^{*} \text { st. } \\
& c_{i}^{*}+\sum_{\substack{i=1 \\
\vdots \neq x}}^{n} c_{i}=c \in \mathbb{R}_{q} \\
& z_{i * x} \in r_{i *}+c_{i x} \times x \in \mathcal{Z}_{q}
\end{aligned}
$$

$$
c_{1}, \ldots, c_{n}
$$

\qquad
z, \ldots, z_{n}
For all $i \in\{1, \ldots, n\}$

$$
g^{z_{i}} \stackrel{?}{=} t_{i} y_{i}^{c_{i}}
$$

Given two accepting taos, argue that \exists ix $c_{i}^{*} \neq c_{i}^{\prime} \rightarrow$ Can extract at least ore flog.

Digital Signatures

* Public-key version of a mAC.
* Used everywhere! HTTPS, s/u update, sst, veN, enc msg,....

Verfier should detect tampering by advesary

App: Authenticated DH Key Exchange

Q: Where does Alice jet pk ob?
\rightarrow Did we just move the problem aroid

Digtal Sigs: Defn
Msy space OM, Three eff algs:

$$
\begin{aligned}
& \operatorname{Gen}\left(1^{n}\right) \rightarrow(s k, \rho k) \\
& \operatorname{Sign}(s k, m) \rightarrow \sigma \\
& \operatorname{Verify}(p k, m, \sigma) \rightarrow \text { S0, } 13
\end{aligned}
$$

Correctuess:

$$
\begin{aligned}
& \forall(s k, p k)<\operatorname{Cen}\left(1^{\lambda}\right) \forall m \in \mathscr{M} \\
& \operatorname{Ver}(\rho k, m, \operatorname{Sqn}(s k, m))=1
\end{aligned}
$$

Security: Existantial unforgeability under chogen Moy attack \forall Clf duiA regl sn st. A's advantage in (EUF-CMA) following gaine is ngl:

Chal

$$
\begin{aligned}
& (s k, p k) \leftarrow \operatorname{Cin} l) \\
& \sigma_{i}<\operatorname{Sis}_{\mathrm{gn}}\left(s k, m_{i}\right)
\end{aligned}
$$

Adv

Adr wins if $m^{*} \notin\left\{m_{1}, m_{2}, \ldots\right\} \quad\left(m^{*}, \sigma^{*}\right)$ AND $\operatorname{Ver}\left(p k, m^{*}, \sigma^{*}\right)=1$

Notes on Sec Def

* Strong: - Adv gas iss on mags of ts choice
- Can forge on any mig
* BUT admits schemes in which given (m, σ) can gevarte $\begin{aligned} & \left(m, \sigma^{\prime}\right) \\ & \text { (New sig on old msg }\end{aligned}$
Break

Constructing Digital Sis
Many nice ways to do it!

* From OWF (Lamport,...)
* Trapdoor OWF (RSA)
* Pol protocol + OWF (Schnoor, ...)
- We will see this one.
* On Internet today, Schnorr-like schemes common (Why $\begin{aligned} & \text { EC-DSA) }\end{aligned}$
$* R S A$ less \& less common - longer sis \& pt (2S6R us 32 2 GA)
* PQ schemes coming

Basic idea of Schnorr sig

* Take interactive Sigma protocol b make it non interactive.
* Proof of knowledge of sk becones sis \rightarrow Whoever serevated pf must know sk
\times Bind message to be spied in there sonewtere

Bach to Schnorr

Schnorr Signatures *Ed2ss19, mich the sane
Schnorr Statures - EC-DSA same ide but tweeted to
Signature scheme is almost the save, except w/ mss hashed in when computing challenge.

Key ger justaniest generates
$G_{\operatorname{cn}(1)}=$

$$
\operatorname{Gin}()=\begin{aligned}
& x E^{R} \mathbb{R}_{q} \\
& \text { cretin }\left(x, g^{x}\right)
\end{aligned}
$$

What about security?
\rightarrow We converted an interactive to a non-interactice one using a hash fa.
"Fiat-Shamir heuristic"
\rightarrow For which choices of hash fr H does this transformation preserve security of the underlying scheme
\rightarrow More later...

Two approaches: [Different views of sane thing?]

1. Make new assumption

Plug in "reasonable" crypto hash fo (e.g. SHA 2) and assume that the resulting sis scene is secure G Not so elegant? But pragmatic
2. Change the model of computation
"Random-orade model" [B R93]
Assume that all parties have (o nib) orade access to a true random hash f_{n}.

More on Radom-Orade Model (Rom?)
Inf. The: If Schnore is secure ID scheme against eavesdropping attacks, Schnorr sig scheme is secure sis scheme (EUF-CMA), provided that we model hash fun t as R.O.

Why does R.O.M help argue security?
Intuition: In Schnorr ID achene cheating P^{*} really cannot predict what the challenge will be!
Technically: Even in non-interactive setting can extract dog from cheating prover P^{*}

$$
\begin{array}{r}
r \leqslant \mathbb{B}_{q} \\
+\leftarrow g^{a} \\
c \leftarrow H\left(g^{x}, t, m\right) \\
z \leftarrow r+c x \in \mathbb{Z}_{q}- \\
\\
\text { tine } \downarrow \quad \neq c^{\prime} \leftarrow H\left(g^{x},+, m\right) \\
z^{\prime}-r+c x \in \mathbb{Z}_{q} \\
\text { Can extract by } \\
\text { changing our mind } \\
\text { about value of } H()
\end{array}
$$

Certificates \& PKI Pub key infrastiuncture

Where does Bob get Alicés pk?
Many options. All bad in their own way.

1. Name as Pk, as in Bitcoin, Tor hidden sues

+ Solves plo dist problem
- Lose key? Remember?

2. Trust un first use, as in SSH, Signal, whats App

+ Simple, intuitive, effective?
- No protection on $1^{\text {st }}$ mss, key charges?

3. Certificates, used in TLS (INTPS in your browser, etc.)

+ Scales well, no online CA interaction
- Validation weak, lost ky?, "weakest link" security (Compromising one CA ${ }_{\text {to }}$ forge any enough

$$
(s k,(\text { Alice", pkalia)) }
$$

