Lecture 6: Encryption in Practice

G.S610 - MIT Spring 2023 Henry Corigan-Gibbs

Plan	· · · · · · · · · · · · · · · · · · ·													
- Recap: AES-G(M - Three constructions	Logistics													
æes Des	* Pset I due Friday Spr * Friday recitation is													
[Stratch break]	* Friday recitation is all about project. Important:													
Chacha 20	* Next week meet TA/													
- MITM Attack a 20th	* Next nects : meet TA/ instructor re: project lidelly OH)													
	* Think on groups for project.													

Encryption used everywhere? - Phone - Computer { Essentially any net com today - Satellite - NIST publishes standards for encryption Lo Widely used, read often for selling to gouts -> N-t only standards org (IETF also, ISO, ...) - NIST Ciphors |92| = 2⁵⁶ Block sig $\begin{cases} -DES (1975) & |92| = 2^{36} \\ -30ES & |92| = 2^{168} \\ -AES (1998) & |92| \in 52^{125} 2^{112} 2^{112} \\ 192| = 2^{168} \\$ $n = 64 \times$ n = 64 7 Stall n = 128 9 used. U.S. SECRET : AES. 128/192/286 2 Algs are TOP SECRET: AES-192/256 } public! Are PRPs, but some common primitives (eg. Chadra 20) are not -While you will never need to implement these primitives yourself, worthwhile to understand design. - Hash Sunctions are coming up, but not today...

Recap: AES-GCM (Authenticated encryption) CPA - secure encryption }= Authenticated encryption Secure MAC => CCA security Encrypt then MAC User AES as PRF: F: % 10,13" -> 10,13" (n= 128) $\begin{bmatrix} c_{\bullet} & c_{\downarrow} & \cdots & c_{n} \end{bmatrix} M M M M M$ $t_{ag} \approx F(k, IV) \oplus \sum_{i=1}^{n} C_i r^{n-i} \left\{ \right\}$ (Also need to include may largth in bash but I'm omitting it for simplicity.) -> Single pass over the message -> Careful use of PRF lots use some key for on & MAC Not sofe ingertral

Other notes on AES-GCM - CPUs have HW support for AES (GBs por second) (AES-NI) La Essentially for free "today. As we discovered, AES is PRP but used have as a PRF. Swhy is that safe?! PRP = PRF PRF Switching Lemma" (See Borch-Shovp) Let P: 22 × 10,13" > 10,13" be ~ PRF Then for any PRP and Pree, I PRF and Pres st. $\left|\mathcal{A}_{PRP} - \mathcal{A}_{PRF}\right| \leq \frac{9^{2}}{2^{n+1}}$ Intuition: * Collisions in artputs is any diff the PRF & PRP * Until q = 2^{1/2} will not expect to see collisions by Birthday prindom. * After that, car distinguish? La See "Sweet 32 - Hack" 768 GB traffic on 3DES (69-6+64ck)

Properties that AES-GCM desint provide - Nonce - revie protection La Some modes of operation do (at some cost) Revising nonce reveals equality & nothing more - Commitment Ct k2 M2 Ly Can find (K_1, K_2, c) $Dec(k_1, c) = msg_1$ $Dec(k_2, c) = msg_2$ Control = 1/2 bits of each msg.A - C (Dodis, Cribbs, Ristemport,) Woodage '18

Why MAK-then-encrypt is bad: * Some enc schenes (CBC mode) require plaintext be multiple of block size, e.g. 16 bytes L' Convenient & sometimes necessary * Pad msg with n indicating "truncate n+1 bytes" MAC prod M 30 Tag 3 3 3 3 (1) PRUdorardom bytes from AES(k,) · · · · · · ·) encrypt ct= 🤇 4 4 4 4 4 decr.pt evil ct 4 4 4 4 4 (1) Rodding msg ta if so, If adv can learn whether padding is valid, learns one byte of MEG? -> Timing, error meg.etc. (2) MAC 101,2 >

Three constructions AES - Substitution permutation DES - Feistel notwork Chacha 20 - Even - Mansour (?) PRF Some of crypto is based on "nice" assumptions Ly "win win" E.g., factoring. L> Nice things cost too much PRF/PRP design is mession in some mays: * Design to resist best known attack * Try to get others to break (NIST conpetitions) * Partich when broken -> Surprise No serious break of 3DES (beyond durins ones) D.S. cult part (in some sense) isn't security, it's getting security with good performa on all hype (example & 3rd grodbr)

Warning !												•	•	•																						
	Ţ	Ś	•	N	7T	، مرک	at	(ev	nρ	ł	7.		bi	j. I	J		e Pr	•	ìm	ما م	in	ent	7	с СЛ 1		þk	ilı	cîp	he	 •	(0-	'n	nod	ן נ	•	•
•	• •		ں جا ہ	+	ini ake	۰ ک به	l N	G 1 a M	שם כ יש	nc	he ye	is: In-) S	tt a	cul f	ks 1	, ∮e		۲	79" to	Far	naly gain	(S)	`, ک رما	et Fi	i. do	~U	, S	ć	tes	·3	n	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•					•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				•	•	•	•	•	•
•																																				
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•					•	•	•	•	•
-																													•							
	•	•		•	•							•	•		•			•	•		•	•		•	•	•										•
																													•							
•	•			•	•													•			•															
•	•										•	•	•		•							•	•		•											
•	•											•	•		•							•			•											
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	:				•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•					•	•	•	•	•
•																													•							
																																	•			
																																	•			

Design of AES (PRP/block cplan) AES is an Iterated Even-Mansour cipher Uses invertible II: {0,1}28 -> {0,1}28 + Very simple - substitution, linear ops, etc. (subbytes, shiftrices mixcolumns) Derived from key using invertible linear Sn k. k, Kg KIO $\times \longrightarrow \stackrel{}{\longrightarrow} \stackrel{}{\rightarrow} \stackrel{}{\longrightarrow} \stackrel{}{\rightarrow} \stackrel{}{\longrightarrow} \stackrel{}{\longrightarrow} \stackrel{}{\rightarrow} \stackrel{$ * Slightly diff to make enc b dec more similar for Hb AES 128 hrs 10 rounds" 256 14 rounds Security justification *After two decades of cryptonalysis, no grat attacks *If we model TT as a random perm => Prove security.

DES Cipher (PRP/block cipher) * flored Faistel (MIT usrad) -> gout -> IBM * Lucifer - preculsul to DES, was Faited net * Also how you got PRF => PRP Invertible? · . A. \mathbf{X}_{o} , \mathbf{v}_{o} $y_{i-1} = X_i$ $x = y \ominus f(x_i)$ Luby & Rackof showed that .S S(K,·) is a **f(⊮,))**← $\bigoplus_{i=1}^{n}$ secure PRF => Feistels is a score PRP [Not abrians] X2 * In practice (eg. DES) In f is NOT - PRF -> But LR analysis gives some justification for design. * Fn & used in DES shares many features w/ des round fn (Substitution, parmutation)

ChaCha2O (PRF) - Essentially a PRF (used as "stream cipher") Key = 256 bits $F: \{0,13^{256} \times \{0,13^{128} \rightarrow \{0,1\}^{512}\}$ Consts input MW Key * The permutation IT performs 10 rounds of simple bit SIZ bits operations on 4×4 metrix of 32-6+ Lords (add, r.t, xor). * Design rationale * Used in CTR mode for CPA-secure encryption. . <mark>+</mark> output

<u>3DES</u>	•												
- DES SG-bit Key For short. - EFF DES Craeku : 1998 : \$250k of compute is Now \$20, takes a Sew days													
$3DES([k_1,k_2,k_3], m) := DES(k_3, DES^{-1}(k_2, DES(k_1,m))))$ [Cleven hack: $K_1 = K_2 = K_3 \implies 3DES = DES$]													
* Keylen is 168 bits * NOTA takes $\approx 2^{113}$ time.	•												
	•												
	•												
	•												
	•												
	•												
	•												

Broken dea: JDES "Meet-in-the-middle" attack. Lashows up all over the place. $2DES((k_1, k_2), m) = DES(k_2, DES(k_1, m))$ Key is 56×2= 112 bits - Problem: Meet-in-the middle attach Sny attacker gets (m_0, c_0) s.t. $c_i \in DES(k_3^*, DES(k_1^*, m_i))$ (m_i, c_0) DES(4,) 000 0') KI K2 By birthday paradox, expect to find a collision ofter $-\sqrt{2^{128}} = 2^{64}$ time. Space = 2^{64} con reduc? => Keylen is only effectively 56 bits no improvement.

How does one break a PRF/PRP? (See Don Bonch's CS255 notes Linear cryptanalysis. $\Pr\left[\Pr_{g,c}\left[\Pr_{g}\oplus\Pr_{g}\oplus\Pr_{g}\oplus\Pr_{g}\oplusC_{g}\oplusC_{g}\oplusC_{g}=k_{g}\oplusk_{g$ Matsui (1993) found linear relation like this with E=2-21 Attack: - Find $1/\epsilon^2 \approx 2^{42}$ (pt, ct) pairs - Compute noisy grasses is key bits using (*) - After $1/\epsilon^2$ pt/os, will get correct ky bits whp. S Reveals ≈ 12 key bits. Brute for a the rest. \implies Small bias causes serions break $2^{56} \Rightarrow 2^{2}$