Lecture 5: Back to Encryption

MIT - G. 5610 Spring 2023 Honry Crian-Gibbs

Pan	· · · · · · · · · · · · · · · · · · ·
→ Review * Building blocks * CPA secure enc *MAC → GMAC analysis	* Post I due Friday Spm? * Reminder : Extensions
-> Stretch break -> CCA security & AE * Encrypt then MA	С.
	. .
· ·	
	. .
· ·	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Primitives so far One-way for (OWF) - "hard to invert" f {0,13° → {0,13° "small random => Big pp" str => String Pseudorand generator (PRG) G: {0,13" -> {0,13" any poly(n) Pseudorand Sn (PRF) F: 9K × 80, 13" -> 50, 13" ~ only pay(n) " $F(k, \cdot)$ looks like -random fn" when they " $A^{F(k, \cdot)} \simeq A^{L(\cdot)}$ Pseudorand perm (PRP) "block cipher" $F: \mathcal{R} \times So, 13^{\circ} \rightarrow 30, 13^{\circ}$ $F^{-1}: \mathcal{R} \times 20, 13^{\circ} \rightarrow 60, 13^{\circ}$ "F(k,.) locks like a random perm" $A^{F(k, \cdot), F'(k, \cdot)} \simeq A^{P(\cdot), F'(\cdot)}$ AREX AXE SOIL $F'(\kappa,F(\kappa,x)) = x$ Make sure you know & understand the formal demir (seo past nutes)

All equally powerful in theory terms. THEORY HILL Inned ate PRACTICE PRG Ch-Cha 20 GGM tree Counter mode Ctr 'RF Imredi Luby-Rack-If "Switching lemma" Sutching PRF AES Will discuss how to brild these things next time.

Bigger tools CPA-Secure encryption (weak / passive sec) (Enc, Dec) over & is CPA secure if the eff adv I negl in st. |Pr[A outputs | when b=0] - Pr[A outputs | when b=1] E negl. Adv Chal $\begin{array}{c}
 M_{i} \\
 \overline{Enc(k, m_{i})} \\
 \underline{m_{i}^{*}, m_{i}^{*}} \\
 \underline{Enc(k, m_{b}^{*})} \\
 \end{array}$ K € X be {0,13 Even getting WEAK CPA security requires randomness? La Egg encrypting SSH comm P A S S W O R D La Obvious??? Counter mode using PRF F. X × {0,13" -> [0,13" Enc(k, moll m, 11-11,) = Doesn't real to be multiple of d block size IV = [0,1] Đ F(2, IV) |F(2, IV + 1) F(2, IV+2) - c=(IV)

Message Authentication Code Enc schemes give No integrity protection? MAC does. A MAC is a S^n -MAC: $\mathscr{K} \times \mathscr{M} \rightarrow \{0,1\}^n$ Chal $k \neq \Re$ $k_i = MAC(k_i, m_i)$ t_i Adv (m^{*}, t^{*}) Alv wins is $MAC(k, m^{*}) = t^{*}$ AND $m^{*} \notin \{m_{1}, ..., m_{n}\}$ a separate alg Some MAC schenes have a Ver (14, m, t) -> {0,1} to check tags. GMAC does | Note:

GMAC [Simplified!]	
First, define	Can compute in parallel. (see Horner's method)
GHASH(r, m, 11 11 m,)	$= len(m) + m_{1}r + m_{2}r^{2} - + m_{n}r^{n}$ = GF(2 ^{12*})
$GMAC((n,r),m) = \{I\}$	$V \leftarrow \{0,1\}^{128}$ $I, F(k, IV) \ominus GHASH(r, m)$
GMD(Ver((4,1), m, (IV, t)) :=	= $F(t, TV) = \frac{2}{3}$
Claim If $M \neq m^{2}$	
$P_r [GHASH(r, m)]$ $r \in \{0, 1\}^{28}$	$= GHASH(r, m')] \leq \frac{n}{2^{128}}$
Idea: GHASH(r, m)=	GHASH(r,m')
\Rightarrow $(m, -m',)$.	$r + (m_1 - m_1)r^2 + \cdots + (m_n - m_n)r^2 = 0$
$\Rightarrow P(r) = 0$	
Non-zoro Poly	, of degree n. At most n roots!
<u>Claim</u> GMAC is secure M Idea: Adv has no info of n. S. adv 50.91	AC. In r. So all add in Gre indep LS w.p $\simeq \frac{q^{2}+n}{2^{128}}$ on $q_{1}q_{1}p_{2}$ or $q_{2}q_{1}p_{2}$ os.

CCA Security
CPA-secure: Adv can see enorgation & msgs of its choice Lubrat is adv can see decryptions?
A B F How could adv A B F How could adv A learn any info
* B could reply u/ mag of varying len * B could throw error * B could reply in diff time * B could reply in diff time * B could perform other action
=> Two tasks 1. Stronger &c Jefn (CCA) 2. Stronger enc scheme.
Decryption routine for CCA schene can ariput "Sail"

<u>CCA</u> : Desinition Adv Chal m i K& X Enc(k, m;) · · C. · · $\frac{Dec(k,c)}{e^{m_{x}^{*}},m^{*}}$ be 10,13 $C^{*} = Enc(k, M_{b}^{*})$ More guaries. $W_{b} \in \{0,1\}$ Adv may never ask for Dec(4, c*)? CCA Security Defo (Enc, Dec) is CCA secure if $\forall e \beta$ and $\forall A \exists negl for$ $st. <math>|P_r[W_0 = 1] - P_r[W_1 = 1]| \le Negl.$ Adv is very powerful here. AND adv's good is very weak => Strong security Strangest possible??? NG

CCA Observations * CCA sec => CPA &c => CCA must be voud. * CCA its cannot be "malleable" at all ct c c* ask for dec f cx * CCA admits scheres that allow adv to cook up own cts ("Gold standard" sec def) Authenticated encryption (Enc, Dec) is AE if 1) Is CPA secure and $\frac{Chal}{k \neq 2k} \xrightarrow{M_{1}} 0$ $\frac{End(k, M_{1})}{k}$ 2) Satisfies "cteat integrity" Adv wins if a c* \$ {c1, ..., cn} and De(k, 2*) = reject AE Security => CCA security. ⇒ Msg integrity AE is "gold Standard" for enc & curity. L> AEAD = AE + as sociated (auth but not enc) data

Constructing AE schemes
"Encrypt then MAC" -> As easy as it sounds
-Independent keys for m both parts (PRF) -AES-Gam is standard JEna(Kenc, i) GTR mode + GMAC OT Itag - ChaCha-Poly 1305 is another
To decrypt: 1) Check MAC on it first. Is bod, FAIL. 2) Then decrypt.
Encrypt-then-MAC is only safe way to combine enc & MAC * AES-GCM = AES-CTR then GMAC * Also common = Chacha 20 + Poly 130S mac * Well-designed crypto APTS hardle this for you
It's possible to construct AE directly from PRF (OCB) La less common. Why

Bad Ideas MAC-then-encrypt La Many many attacks (SSL) La Basic idea: "podeling oracle" Encrypt - and - MAC Lo Used in SSM (old reviews) Fundamental dea: If one scheme is only OPA secure, adv annot learn any info on result of decrypting adv-chosen ct MAC-then encrypt & encrypt-and-MAC violate this!

Why MAC - then - encrypt is bad: * Some enc schenes (CBC mode) require plaintext be multiple of block size, e.g. 16 bytes L' Convenient & sonetines necessary * Pad msg with n indicating "truncate n+1 bytes" mac prod more tag 3 3 3 3 preudorardom bytes from AES(k,)) encrypt ct= $\begin{array}{c|c} \hline 3 \\ \hline 2 \\ \hline 2 \\ \hline 4 \\ \hline - \\ \hline = \end{array}$ Jacc. 7 evil ct msg ta 44444 check Tf adv can learn whether podding is valid, Fail Mar learns one byte of Msg?