
Lecture 3:  Message Authentication Codes

Last time:  CPA secure encryption

Today:  

1. Recap

2. Motivate and define the notion of message authentication 

codes (MACs)

3.  Construct MACs

Recap:  

Definition (informal):  A symmetric encryption scheme 

𝐸𝑛𝑐, 𝐷𝑒𝑐 Is said to be secure against adaptive chosen message 

attack if for any PPT adv 𝐴, any messages 𝑚1, … ,𝑚𝑡 ∈ 𝑀

and any 𝑚1
′ , … ,𝑚𝑡

′ ∈ 𝑀 chosen adaptively by 𝐴

𝐸𝑛𝑐 𝑘,𝑚1 , … , 𝐸𝑛𝑐 𝑘,𝑚𝑡 ≈ 𝐸𝑛𝑐 𝑘,𝑚1
′ , … , 𝐸𝑛𝑐(𝑘,𝑚𝑡

′)

Construction:  Using PRF and one-time pad.

In practice:  Using AES and one-time pad with counter mode:

𝐸𝑛𝑐(𝑘,𝑚1|| … | 𝑚𝑛 = 𝑟, 𝐴𝐸𝑆 𝑘, 𝑟 + 𝑖 ⊕𝑚𝑖 𝑖∈[𝑛]



This definition does not provide any form of authentication!

Namely, an adversary may chance the message and the parties 

may not be able to detect it.  This is a security breach!  

Authentication:

User ServerInstruction

password

How does the server know that it is Alice who is sending the instruction?

Message Authentication Codes (MACs)

Assumes the communicating parties share a secret key 𝑘.

Alice Bob

𝑘 𝑘

𝑚

Add:  𝑀𝐴𝐶(𝑘,𝑚)

Ensures the authenticity of 𝑚



Definition:  A message authentication code consists of a (signing) 

function 𝑀𝐴𝐶:𝐾 ×𝑀 → 0,1 𝑛 with the following security guarantee:

For any 𝑃𝑃𝑇 adversary 𝐴, it wins in the following game with only 

negligible probability. 

𝑨Challenger

𝑚1

𝑀𝐴𝐶(𝑘,𝑚1)

𝑚2

𝑀𝐴𝐶(𝑘,𝑚2)

𝑚𝑘

𝑀𝐴𝐶(𝑘,𝑚𝑘)

𝑚∗, 𝑡∗

Attacker goal:  Existential forgery; i.e., forge a MAC for any message.

Attacker power:  See MACs for messages of its choice.

Is this goal too strong?  Why do we care if the attacker MACs gibberish?

Parties can MAC their secret key (which is gibberish)



Remark:  More generally, one can define a MAC as two algorithms:

a signing algorithm 𝑆𝑖𝑔: 𝐾 ×𝑀 → 0,1 𝑛 and a verification algorithm

𝑉𝑒𝑟:𝐾 ×𝑀 × 0,1 𝑛 → {0,1}, such that for every 𝑘 ∈ 𝐾 and 𝑚 ∈ 𝑀,

𝑉𝑒𝑟 𝑘,𝑚, 𝑆𝑖𝑔 𝑘,𝑚 = 1

We chose to define a single algorithm (𝑀𝐴𝐶) since that is the case in

practice.  In the public key setting we will define it via two algorithms

as above (stay tuned!).

𝐴 wins iff t∗ = 𝑀𝐴𝐶(𝑘,𝑚∗) and 𝑚∗ ∉ {𝑚1, … ,𝑚𝑘}

Definition:  A 𝑀𝐴𝐶:𝐾 ×𝑀 → 0,1 𝑛 is secure against adaptive

chosen message attacks if any 𝑃𝑃𝑇 adversary wins in the above 

game with only negligible probability. 

Constructions:  Use a PRF!

𝑴𝑨𝑪 𝒌,𝒎 = 𝑷𝑹𝑭(𝒎)

Note:  The value of a PRF is required to look random, whereas the 

value of a MAC is required to be unpredictable (both given oracle 

access to the function).  The latter is weaker if the output size is large.



Authenticating arbitrarily long messages:

Theorem:  Every PRF with domain 𝐷 and range 𝑅, such that 1/|𝑅| is 

negligible is a 𝑀𝐴𝐶 with message space 𝐷.

Corollary: 𝐴𝐸𝑆 is a secure 𝑀𝐴𝐶 for messages in 0,1 128.

Attempt 1:  Partition the message into smaller blocks and 𝑀𝐴𝐶 each 

block separately. 

𝒎 = 𝒎𝟏, … ,𝒎𝒏 ∈ 𝑫𝒏 𝑴𝑨𝑪 𝒌,𝒎𝟏), … ,𝑴𝑨𝑪(𝒌,𝒎𝒏

Insecure!   Can execute a mix and match attack.

Attempt 2:  Partition the message into smaller blocks and 𝑀𝐴𝐶 each 

block using a chaining:

𝑚1 𝑚2

𝑓𝑘 ⊕

𝑓𝑘

𝑚3

⊕

𝑓𝑘

𝑚𝑛

⊕

𝑓𝑘 𝑡𝑎𝑔



Insecure!   Can execute an extension attack. 

Given a tag for 𝑚, denoted by 𝑡𝑎𝑔, and given a tag for 𝑚′, denoted 

by 𝑡𝑎𝑔′, one can generate a tag for 𝑚′||𝑡𝑎𝑔′ ⊕𝑚.  The tag is 𝑡𝑎𝑔.

Final fix:  Choose two independent and random keys 𝑘, 𝑘∗ ∈ 𝐾.

𝑚1 𝑚2

𝑓𝑘 ⊕

𝑓𝑘

𝑚3

⊕

𝑓𝑘

𝑚𝑛

⊕

𝑓𝑘

𝑡𝑎𝑔𝑓𝑘∗

This 𝑀𝐴𝐶 is known as Cipher Block Changing (CBC) MAC, and 

secure against adaptive chosen message attack if 𝑓 is a 𝑃𝑅𝐹.



MAC with improved efficiency:  Galois MAC (GMAC)

Basic idea:  Use the same chaining structure as above, but instead 

of using a PRF (i.e., AES), use a one-time secure MAC, and encrypt 

the tag using AES.

𝑀𝐻: 0,1
128 → 0,1 128

Namely: Instead of using AES, use the multiplication function  

defined by 𝑀𝐻 𝑥 = 𝐻 ⋅ 𝑥 where 𝐻 ∈ 0,1 128 and multiplication is 

in the Galois field 𝐺𝐹[2128]

𝑚1 𝑚2

𝑀𝐻
⊕

𝑀𝐻

𝑚3

⊕

𝑀𝐻

𝑚𝑛

⊕

𝑀𝐻

𝑀𝐻

⊕𝑛

𝑡𝑎𝑔 = (𝑖𝑣, 𝐴𝐸𝑆 𝑘, 𝑖𝑣 ⊕ 𝑡𝑎𝑔1)

𝑡𝑎𝑔1
𝐻 = 𝐴𝐸𝑆(𝑘, 0)



Note that 𝑀𝐴𝐶 𝑘,𝑚 is computed as follows:

1.  Parse 𝑚 = 𝑚1|| …𝑚𝑛.

2.  Compute v = σ𝑖𝑚𝑖𝐻
𝑖 over 𝐺𝐹 2128

3.  Output an encryption of 𝐻 ⋅ 𝑣 ⊕ 𝑛

Efficiency gain:  𝐻𝑖 can be precomputed, and multiplication

is more efficient that 𝐴𝐸𝑆.
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