Lecture 3: Message Authentication Codes

Last time: CPA secure encryption
Today:
1. Recap

2. Motivate and define the notion of message authentication

codes (MACs)
3. Construct MACs

Recap:

Definition (informal): A symmetric encryption scheme

(Enc, Dec) Is said to be secure against adaptive chosen message

attack if for any PPT adv A4, any messages m4, ..., my € M

and any my, ..., m; € M chosen adaptively by A

Enc(k,my), ..., Enc(k,m;) = Enc(k,m}), ..., Enc(k,m})

Construction: Using PRF and one-time pad.

In practice: Using AES and one-time pad with counter mode:

Enc(k,mq]| ...|Imy) = r,{AES(k,7 + 1) D m;}icn

This definition does not provide any form of authentication!
Namely, an adversary may chance the message and the parties

may not be able to detect it. This is a security breach!

Authentication:

password

How does the server know that it is Alice who is sending the instruction?

Message Authentication Codes (MACs)

Assumes the communicating parties share a secret key k.

k k

m

Add: MAC(k, m)

Ensures the authentic@

Attacker goal: Existential forgery; i.e., forge a MAC for any message.

Is this goal too strong? Why do we care if the attacker MACs gibberish?

Parties can MAC their secret key (which is gibberish)

Attacker power: See MACs for messages of its choice.

Definition: A message authentication code consists of a (signing)
function MAC: K X M — {0,1}"™ with the following security guarantee:
For any PPT adversary A4, it wins in the following game with only
negligible probability.

Challenger A

mq

<

MAC(k, ml)‘

my

P
<

MAC (k, m;)

mg

MAC(k, mk)‘

m*, t*

P
<

A winsiff t* = MAC(k,m") andm”™ & {m4, ..., m;}

Definition: A MAC:K X M — {0,1}" is secure against adaptive
chosen message attacks if any PPT adversary wins in the above

game with only negligible probability.

Remark: More generally, one can define a MAC as two algorithms:

a signing algorithm Sig: K X M — {0,1}" and a verification algorithm

Ver:K x M x {0,1}"* — {0,1}, such that for every k € K andm € M,
Ver(k, m, Sig(k, m)) =1

We chose to define a single algorithm (MAC) since that is the case in
practice. In the public key setting we will define it via two algorithms

as above (stay tuned!).

Constructions: Use a PRF!
MAC(k,m) = PRF(m)

Note: The value of a PRF is required to look random, whereas the
value of a MAC is required to be unpredictable (both given oracle

access to the function). The latter is weaker if the output size is large.

Theorem: Every PRF with domain D and range R, such that 1/|R| is

negligible is a MAC with message space D.

Corollary: AES is a secure MAC for messages in {0,1}128.
Authenticating arbitrarily long messages:

Attempt 1: Partition the message into smaller blocks and MAC each

block separately.
m=(my,..,m,) € D" =) MAC(k,m,),.., MAC(k,m,)

Insecure! Can execute a mix and match attack.

Attempt 2: Partition the message into smaller blocks and MAC each

block using a chaining:

m1 mz m3

l 1 1

my
l
fi | —D® —& — O
l

fi fi fi |— tag

Insecure! Can execute an extension attack.

Given a tag for m, denoted by tag, and given a tag for m’, denoted

by tag’, one can generate a tag for m'||tag’ @ m. The tagis tag.

Final fix: Choose two independent and random keys k, k™ € K.

l 1 1

my
l
fi | —® — - D
l

fr fr fr
|

fr* | — tag

This MAC is known as Cipher Block Changing (CBC) MAC, and

secure against adaptive chosen message attack if f is a PRF.

MAC with improved efficiency: Galois MAC (GMAC)
Basic idea: Use the same chaining structure as above, but instead

of using a PRF (i.e., AES), use a one-time secure MAC, and encrypt

the tag using AES.

Namely: Instead of using AES, use the multiplication function
My:{0,1}1%8 - {0,1}12®
defined by My (x) = H - x where H € {0,1}1?® and multiplication is
in the Galois field GF[2128]

mq

l

l l
My|—® —& — &
l l

m3 mn

My My My

n— @

H = AES(k,0) 1
MH —_— tag1

tag = (iv, AES(k,iv) @ tag,)

Note that MAC (k, m) is computed as follows:

1. Parsem = my||...m,,.
2. Compute v = Y, m;H' over GF[2'28]
3. Output an encryption of H - (v @ n)

Efficiency gain: H' can be precomputed, and multiplication

is more efficient that AES.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

