Lecture: Encryption Intro

MIT - 6.5610 Spring 2023 Henry Corrigon - Gibbs

Plan	
-Recap: PRF	Logistics
- CPA Security [Weak encryption]	* Pset 1 out tomorrow. GONLY collab of pset grp
- CPA-secure encryption from PRF: Counter mode	* We will assign pset
- Pseudorandom permutation	grows Tonight
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·

Recap: Pseudorandomness Easy to compute, hard to invert Stretch short random seed int. long pseudoranelon string OWF PRG-A keyed for 5 s.t. $f(k, \cdot)$ "looks like" random for when keekeyspace PRF: (PRP) A PRF is an eff. for Could be l(n) $5: \mathcal{H}_{n} \times \{0, 13^{n} \rightarrow \{0, 13^{n}\}$ s.t. Vest odv A, I negl for st. $\left| \Pr\left[\lambda^{s(k,r)}(1^n) = 1 : k \in \mathcal{H} \right] - \Pr\left[\mathcal{P}\left[\mathcal{P}\left(1 \right) = 1 : R \in \operatorname{Fans}_{n} \right] \right| \leq \operatorname{negl}(n).$ Real world Ideal world PRFAd [A, f]. WI random Sms 1981=2 [Q: Is PRF still pseudorandom & Adv gets 1 bt of key?]

Counter Mode PRF => One-time (comp. &c.) enc w/ short key $PRF \quad f: \mathcal{H}: \{0,1\}^n \longrightarrow \{0,1\}^n$ Enc(k, m) :=f(k, 0) = f(k, 1) = f(k, 2) = f(k, 3) = c+ Bon us: Parcellelizable:Dec(k,c) := C @ [f(k, 0)]1 Ide: Is adv can distinguish Enc(k, mo) from Enc(k, m) Can break PAF

Weaknesses of the one-time pad * Long Key & PRF * One ct per key - Today * Adu can tamper u/ ct < Next time Enc scheme secure 5 odv can see many Goali msg encrypted with same key, L>NO Integrity protection (next time) Applications: * File encryption * Some Internet protocols Our security Jefn is going to consider strong adv: * gets and of many msg of its choice] why? * just has to dist end of me, m, (chosen) "IND-CPA security" Historical example: Give may to embassing, cook to relay to hone goit => Enc of chosen may!

CPA Security For an enc schene (Enc, Dec) over (2, M, C), Jefine gene: Chal KER < · · · m;. · · · 🖌 $C_{i} \leftarrow End(k, m_{i})$ C* ~ Enc(h, mb) . . . Let W = output of gone b. We say (Enc, Dec) is CPA-secure if V eff advs A - 7 negl for st. [PrTWJ-Pr[W,]] < reg]. If we wont to be fully precise, parometerize everything by sechrity parameter in " or ">" Weak : + What is and and see decryption of chosen of? + Tomper y may?

OPA-Secure Enc must be randomiced? Intuition: * Think about SSH - encryption of 8-bit chars. Passur Grepottach Concretely, show attack in CPA game. * Evan WEAK encryption requires randomness? Lobrions? Or very non-obrions? (GM'84)

CPA-Secure Enc from PRF. * Let (Enc, Dec) over \$X, M, E (perfectly) secure enc schene be a one-time * let f X' x 30,13" -> 22 be a PRF Then Enc'(k',m) := p× = {0,13 $k' \in f(k, x)$ output (x, Enc(k, m)) Dec'(K', (x, c)) := $k' \leftarrow f(k, x)$ output Dec(k,c) Show instantistion w/ one-time pad La Still nalleable? Adv breaking Enc' breaks either Enc or PRF S. (See Bonch-Shoup Thm S.2) Them: For all CPA adv A muching Q CPA queries, 5 PRF and 3 st. CPAcodu [A, Enc] = $\frac{Q^2}{2^n}$ + 2 PerAdu[B, 5]

<u>PRP</u> ("Block cipher")
* Used to be dominant, les) so now
P: 2 × {0,1} ~> {0,1}
P ⁻¹ 22 × 50,13 → {0,13"
Correctness YLEX YXE {0,1}"
$P^{-1}(k, P(k, x)) = x$
Prendwindomress
Same as PRF except that adv gets oracle access to $P(k, \cdot) P'(k, \cdot)$. Can't dist from $T(\cdot)$; $T(\cdot)$ for $k \ll 2k$, $T(-1) Perms[50,1]$]
* People thought you needed to "encrypt" & "decrypt" Lypef-based constructions simpler, Soster (many core)
Still, important b/c NIST-Standardized ciphons are PDB
$-DES (1975) \Re = 2^{168}$ n = 64 - 30ES $ \Re = 2^{168}$ n = 64
$-AES$ (1998) $ 9K \in \{2^{12}, 2^{11}, 2^{156}\}$ $n = 128$ MB. DES Kun Size is far to small.
in U.S. SECRET: AES-128/112/256 } Aligs are TOP SECRET: AES-192/256 } Public!

Things to know about PRP, -NEVER use directly to encrypt Not even CPA ("ECB mode") - CPUs have HW support for AES (GBs por second) (AES-NI) - Can use as a PRF, as long as you don't use too much "PRF Switching Lemma" (See Borch-Shovp) Let P: 22 × 10,13" > 10,13" be ~ PRF Then for any PRP and Pree, I PRF and Pres st. $\left|\mathcal{A}_{PRP}-\mathcal{A}_{PRF}\right| \leq \frac{9^2}{2^{n+1}}$ Intuition: * Collisions in artputs is any diff blu PRF & PRP. * Until q = 2^{1/2} will not expect to see collisions by Brithday product. * After that, car distinguish? -> Very common to use AES in counter mode ('AES-GCM,) What about 3 DES???