Lecture 2: Pseudorandom functions
Last time: One-time pad (OTP)

Today:

1. Recap

2. Motivate and define the notion of pseudorandomness
3. Define the notion of pseudorandom functions (PRFs)

4. Show how to use a PRF to construct a reusable encryption

Recap: A symmetric encryption scheme is associated a
message space M a key space K and a ciphertext space C
and with two algorithms:

Enc:K XM - C

Dec:K XC - M

Correctness: For every messagem € M and any key k € K

Dec(k, Enc(k, m)) =m

Perfect (one-time) security:

For every m and m'in M and for every cin C
Pr[Enc(k,m)=c] = Pr[Enc(k,m")=c]

Intuitively, this means that a ciphertext gives no
Information about the message since it occurs with

the same probability irrespective of the message.

This is a very strong definition, since it says that even
If the advesary knows that the encrypted message is

ether m or m', still c does not reveal which one it is.

On the other hand it is too weak since it says that the
ciphertext gives no information assuming the adversary

has no knowledge about the secret key!

However, a ciphertext is a function of the secret key

and hence may give information about the key.

This definition undermines the power of the adversary!

One-time Pad [Frank Miller 1882, Gilbert Vernam 1917]
The message space, key space and ciphertext space are {0,1}n
Enclkm)=k & m

Dec(k,c)=k & ¢

This scheme has perfect (one-time) security since

for every m and c in {'EII,‘I]»n
PrlEnc(k,m)=c = 1/2"

Downside:

This scheme breaks down completely if 2 messages are encrypted,

since a ciphertext gives a lot of information about the secret key k

Inherent downside: The key needs to be as large as the total

number of bits encrypted (if we require perfect security).
Cryptography is the art of overcoming barriers!

Idea: Let’s generate more randomness from a short random key

This way, we can encrypt a long message using a short random
secret key, by first “stretching” it and then using the

“stretched” secret key to encrypt the long message.

It is impossible to generate randomness!

Amazing insight: We can generate computational randomness

from hardness!

We overcome the barrier by restricting the class of adversaries

that we are considering to be the class of “computationally

bounded” adversaries.

Now, we don’t need the key to random, rather it only needs to

“look random”.

It turns out that we can take a short random string and stretch
it into one that “looks” random.

The stretched string is not random, but it is indistinguishable
from random in the eyes of a computationally bounded

adversary.

Question: How do we define a computationally bounded

Adversary and how do we define “looks random”?

In theory: A computationally bounded adversary is

one that runs in probabilistic polynomial time (PPT).

In practice: A computationally bounded adversary is

one that runs in time at most, say 28 or 2°°.

We next define what it means to “look random”.
Intuitively, it means that a PPT adversary “cannot distinguish”
between the “random looking” distribution and the uniform

distribution.

“cannot distinguish” means it can distinguish with only

negligible probability.
In practice: negligible means essentially zero (say 278° or 2799).

In theory: negligible is defined as follows:

Definition: A function u: N = N is said to be negligible if for

every polynomial p: N = N, there exists ny such that for

1

everyn >ng,, pn) < o

Definition: A distribution ensemble {D,,},,cn, Where D,, generates
strings in {0,1}", is said to be pseudorandom if for every PPT
adversary A there exists a negligible function u: N = N s.t.

|Pr[A(x) =1] = Pr [A(x) =1]| < p(n).

Initial Goal: Construct a function PRG:{0,1}"* - {0,1}"**1
s.t. the distribution PRG (U,,) is pseudorandom.

Theorem: PRGs exist assuming one-way functions exist.

Intuitively, a one-way function (OWF) is a function that is

easy to compute but hard to invert.

Definition: a function f,: {0,1}"* — {0,1}™™) is said to be a
one-way function (OWF) if it is easy to compute (i.e., it is
computable in poly-time) and for any PPT A there exists a

negligible function u s.t. for everyn € N,
Prl[A(f(x)) =x's.t. x' € f7(f (x))] < u(n)

We strongly believe that OWFs exist.

Example: f(x) = g* mod p, where p is a fixed n-bit prime
number and g is a fixed element in {1, ...,p — 1}.

It is not a OWF for every p, g but it is easy to generate p, g
such that f = f,, ; is believed to be a OWF.

We don’t know how to prove that it is a OWF but rather we

assume itis. Thisis called the Discrete Log Assumption.

An idea of how PRG’s are constructed:

Suppose f:{0,1}" — {0,1}" is a one-way permutation,
such that given f(x) , say the first bit of x, denoted by x4,
looks random. Then, PRG(x) = f(x)||x;.

If x; looks random given f(x), then x; is called a hard-core
predicate. It turns out that any OWF has a hard-core predicate,

which is used to generate “randomness”.
This shows how to generate a single bit or randomness.
We want to generate many bits or randomness

Theorem: Once we can generate one bit of randomness, we

can generate as much randomness as we want (even exp. many)!

Definition: A function f: K X {0,1}" — {0,1}" is said to be a
pseudorandom function (PRF) if a PPT A cannot distinguish
between given oracle access to f (k,-) for random k < K and

oracle access to a truly random function U: {0,1}"* — {0,1}™.

Theorem: A PRF exists assuming a PRG exists (i.e., OWF exists).

This construction is inefficient in practice

Practical construction: AES (Advanced Encryption Standard).
This is a heuristic construction and is not provably secure under

standard hardness assumptions, but it is used a lot in practice.

A PRF allows us to get reusable security!

Encrypt the i'th message by m @ f (k, i),

where k is the secret key.

This is a stateful encryption where the sender and receiver

need to remember the message number i.

One can construct a stateless encryption, by using randomness:
Enc(k,m) = (r,f(k,7) & m)

Dec(k, (, c)) = f(k,7r)Dc

It turns out that randomness is necessary to achieve

(many-time, computational) security!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

