
Lecture 2:  Pseudorandom functions

Last time:  One-time pad (OTP)

Today:  

1. Recap

2. Motivate and define the notion of pseudorandomness

3. Define the notion of pseudorandom functions (PRFs)

4. Show how to use a PRF to construct a reusable encryption

Recap:  A symmetric encryption scheme is associated a 

message space 𝑀 a key space 𝐾 and a ciphertext space 𝐶

and with two algorithms:

𝐸𝑛𝑐: 𝐾 × 𝑀 → 𝐶

𝐷𝑒𝑐: 𝐾 × 𝐶 → 𝑀

Correctness:  For every message 𝑚 ∈ 𝑀 and any key 𝑘 ∈ 𝐾

𝐷𝑒𝑐 𝑘, 𝐸𝑛𝑐 𝑘,𝑚 = 𝑚
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Inherent downside:  The key needs to be as large as the total

number of bits encrypted (if we require perfect security).

Cryptography is the art of overcoming barriers!

Idea:  Let’s generate more randomness from a short random key  

This way, we can encrypt a long message using a short random

secret key, by first “stretching” it and then using the 

“stretched” secret key to encrypt the long message.

It is impossible to generate randomness!

Amazing insight: We can generate computational randomness 

from hardness!

We overcome the barrier by restricting the class of adversaries 

that we are considering to be the class of “computationally 

bounded” adversaries. 

Now, we don’t need the key to random, rather it only needs to 

“look random”. 



It turns out that we can take a short random string and stretch 

it into one that “looks” random.

The stretched string is not random, but it is indistinguishable 

from random in the eyes of a computationally bounded 

adversary.  

Question:  How do we define a computationally bounded 

Adversary and how do we define “looks random”?

In theory:  A computationally bounded adversary is 

one that runs in probabilistic polynomial time (PPT).

In practice:  A computationally bounded adversary is 

one that runs in time at most, say 280 or 296.

We next define what it means to “look random”.

Intuitively, it means that a PPT adversary “cannot distinguish”

between the “random looking” distribution and the uniform 

distribution.



Definition: A function 𝜇:𝑁 → 𝑁 is said to be negligible if for 

every polynomial 𝑝:𝑁 → 𝑁, there exists 𝑛0 such that for 

every 𝑛 > 𝑛0, 𝜇 𝑛 <
1

𝑝 𝑛
.

Definition: A distribution ensemble 𝐷𝑛 𝑛∈𝑁, where 𝐷𝑛 generates 

strings in 0,1 𝑛, is said to be pseudorandom if for every PPT 

adversary 𝐴 there exists a negligible function 𝜇:𝑁 → 𝑁 s.t. 

|Pr
𝑥←𝐷𝑛

𝐴 𝑥 = 1 − Pr
𝑥← 0,1 𝑛

𝐴 𝑥 = 1 | < 𝜇 𝑛 .

Initial Goal:  Construct a function 𝑃𝑅𝐺: 0,1 𝑛 → 0,1 𝑛+1

s.t. the distribution 𝑃𝑅𝐺(𝑈𝑛) is pseudorandom. 

“cannot distinguish” means it can distinguish with only 

negligible probability.  

In practice: negligible means essentially zero (say 2−80 or 2−96).

In theory: negligible is defined as follows:



Theorem: PRGs exist assuming one-way functions exist. 

Definition:  a function 𝑓𝑛: 0,1
𝑛 → 0,1 𝑚(𝑛) is said to be a

one-way function (OWF) if it is easy to compute (i.e., it is 

computable in poly-time) and for any PPT 𝐴 there exists a

negligible function 𝜇 s.t. for every 𝑛 ∈ 𝑁,

Pr 𝐴 𝑓 𝑥 = 𝑥′ 𝑠. 𝑡. 𝑥′ ∈ 𝑓−1 𝑓 𝑥 < 𝜇(𝑛)

We strongly believe that OWFs exist.  

Example: 𝑓 𝑥 = 𝑔𝑥 𝑚𝑜𝑑 𝑝, where 𝑝 is a fixed 𝑛-bit prime 

number and 𝑔 is a fixed element in 1,… , 𝑝 − 1 .

It is not a OWF for every 𝑝, 𝑔 but it is easy to generate 𝑝, 𝑔

such that 𝑓 = 𝑓𝑝,𝑔 is believed to be a OWF. 

Intuitively, a one-way function (OWF) is a function that is 

easy to compute but hard to invert.

We don’t know how to prove that it is a OWF but rather we 

assume  it is.  This is called the Discrete Log Assumption. 



Theorem:  Once we can generate one bit of randomness, we 

can generate as much randomness as we want (even exp. many)!

An idea of how PRG’s are constructed:

Suppose 𝑓: 0,1 𝑛 → 0,1 𝑛 is a one-way permutation,

such that given 𝑓 𝑥 , say the first bit of 𝑥, denoted by 𝑥1, 

looks random.  Then, 𝑃𝑅𝐺 𝑥 = 𝑓 𝑥 ||𝑥1.

If 𝑥1 looks random given 𝑓 𝑥 , then 𝑥1 is called a hard-core

predicate.  It turns out that any OWF has a hard-core predicate, 

which is used to generate “randomness”.

This shows how to generate a single bit or randomness.  

We want to generate many bits or randomness

Definition:  A function 𝑓: 𝐾 × 0,1 𝑛 → 0,1 𝑚 is said to be a  

pseudorandom function (PRF) if a PPT 𝐴 cannot distinguish 

between given oracle access to 𝑓(𝑘,⋅) for random 𝑘 ← 𝐾 and 

oracle access to a truly random function 𝑈: 0,1 𝑛 → 0,1 𝑚.



Theorem:  A PRF exists assuming a PRG exists (i.e., OWF exists).

A PRF allows us to get reusable security!

Encrypt the 𝑖′𝑡ℎ message by 𝑚⊕ 𝑓(𝑘, 𝑖), 

where 𝑘 is the secret key.

This is a stateful encryption where the sender and receiver

need to remember the message number 𝑖.

One can construct a stateless encryption, by using randomness:

𝐸𝑛𝑐 𝑘,𝑚 = (𝑟, 𝑓(𝑘, 𝑟) ⊕𝑚)

𝐷𝑒𝑐 𝑘, 𝑟, 𝑐 = 𝑓(𝑘, 𝑟) ⊕ 𝑐

It turns out that randomness is necessary to achieve

(many-time, computational) security!

This construction is inefficient in practice

Practical construction:  AES (Advanced Encryption Standard).

This is a heuristic construction and is not provably secure under 

standard hardness assumptions, but it is used a lot in practice.
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