
Massachusetts Institute of Technology Handout 3
6.5610: Applied Cryptography and Security March 14, 2023
Professors Henry Corrigan-Gibbs and Yael Tauman Kalai Due: March 24, 2023

Problem Set 3

This problem set is due on Friday, March 24, 2023 at 4:59 PM. Please note our late submission penalty
policy in the course information handout. Please submit your problem set, in PDF format, on Gradescope.
Each problem should be in a separate page.

You are to work on this problem set in groups. For problem sets 1, 2, and 3, we will randomly assign the
groups for the problem set. After problem set 3, you are to work on the following problem sets with groups
of your choosing of size three or four. If you need help finding a group, try posting on Piazza. See the course
website for our policy on collaboration. Each group member must independently write up and submit their
own solutions.

Homework must be typeset in LATEXand submitted electronically! Each problem answer must be provided
as a separate page. Mark the top of each page with your group member names, the course number (6.5610),
the problem set number and question, and the date. We have provided a template for LATEX on the course
website (see the Psets tab at the top of the page).

With the authors’ permission, we may distribute our favorite solution to each problem as the “official”
solution—this is your chance to become famous! If you do not wish for your homework to be used as an
official solution, or if you wish that it only be used anonymously, please note this in your profile on your
homework submission.

Problem 3-1. Hash functions

In this problem, we will explore which properties of hash functions imply other properties. In this problem
we consider the definition given in class of a hash function as a family of keyed functions (see page 3 of the
notes for Lecture 11), where for every security parameter k ∈ N and for every hk ← {0, 1}k there exists a
hash function H(hk, ·) : {0, 1}∗ → {0, 1}k. Decide whether each of the following is True or False, and explain
why.

(a) Any hash function that is collision resistant is also target collision resistant.

(b) Any hash function that is target collision resistant is also one way, where a keyed hash function is
said to be one way if given a randomly chosen key hk ← {0, 1}k and a hash value H(hk, x) for a
randomly chosen x← {0, 1}k, it is hard to find x′ such that H(hk, x) = H(hk, x′) (with non-negligible
probability).

(c) Any hash function that is one way is also collision resistant.

Let H be family of keyed hash functions that are collision resistant, where for every security parameter
k ∈ N and every hk ← {0, 1}k, H(hk, ·) : {0, 1}∗ → {0, 1}k. For each of the following functions H ′

determine if H ′ is necessarily a collision resistant. If so, explain in 1-3 sentences why it is collision
resistant, and if not, provide a counter example.

(d) H ′(hk, x) = H(hk, H(hk, x)).

(e) H ′(hk, x) = H(hk, x)||0.
(f) H ′(hk, x) = H(hk, x)[0 : ⌊k/2⌋], where y[0 : d] is the first d bits of y.

Problem 3-2. Hash-based signatures

In this problem, we will construct a signature scheme using only a hash function. We will work over a
message space M = {0, 1}n. We take H : {0, 1}∗ → {0, 1}k to be a hash function. Then, we define the
following signature scheme:

6.5610 : Handout 3: Problem Set 3 2

•Gen(1k)→ (sk, pk): The key generation algorithm samples 2n random elements x0,1, x1,1, . . . , x0,n, x1,n

in {0, 1}k and outputs them to be the secret key:

sk =

(
x0,1 x0,2 x0,3 · · · x0,n

x1,1 x1,2 x1,3 · · · x1,n

)
∈ {0, 1}k·2n.

It outputs the hashes of these random elements as the public key:

pk =

(
y0,1 = H(x0,1) y0,2 = H(x0,2) y0,3 = H(x0,3) · · · y0,n = H(x0,n)
y1,1 = H(x1,1) y1,2 = H(x1,2) y1,3 = H(x1,3) · · · y1,n = H(x1,n)

)
∈ {0, 1}k·2n.

•Sign(sk,m) → σ: The signature algorithm outputs a signature σ on any message m ∈ M that is
computed as

σ = (xm1,1, xm2,2, xm3,3, . . . , xmn,n) ∈ {0, 1}k·n,

where we write mi to denote the i-th bit in the binary representation of m.

•Verify(pk,m, σ)→ Accept/Reject: The verification algorithm outputs Accept if and only if the following
equality holds for all 1 ≤ i ≤ n:

H(σi) = ymi,i,

where we write mi to denote the i-th bit in the binary representation of m and σi to denote the i-th
element in σ.

In the first part of this problem, we will show that this is a one-time secure signature scheme.

(a) Alice runs the key generation algorithm Gen(1k)→ (skA, pkA) and publishes her public key, pkA. An
adversary learns only Alice’s public key pkA, and does not see any signatures. What is the minimal
assumption we need to assume about H (from the following 4 options) to ensure that the adversary
cannot forge a signature to any message m ∈ {0, 1}n:
1. One-way function

2. Target collision resistant function

3. Collision resistant function

4. Random Oracle Model

Explain your answer.

(b) Next, assume that H is secure as in part (a). Suppose the adversary sees Alice’s public key pkA and
a single message/signature pair (m,σ) that Alice signed with her corresponding secret key, skA, i.e.,

σ ← Sign(skA,m).

Can the adversary forge a signature σ′ on some new message m′ ̸= m such that Verify(pkA,m
′, σ′)

outputs Accept (i.e., m′ looks like it was signed by Alice)? Explain your answer in a few sentences.

(c) Now, suppose that the adversary learns Alice’s public key, pkA, and later also sees two signatures σ1

and σ2, each produced by Alice, on two messages m1 and m2 of its choosing. In other words, for
i = 1, 2, mi is chosen by the adversary and

σi ← Sign(skA,mi).

Explain how the adversary should choose m1 and m2 to then be able to forge a valid signature σ′ on
any message m′ ∈ M (even if m′ ̸= m1 and m′ ̸= m2) such that Verify(pkA,m

′, σ′) outputs Accept
(i.e., σ′ looks like it was generated by Alice).

We have just proved that (Gen,Sign,Verify) is a one-time secure signature scheme but is not secure if the
adversary sees signatures to multiple messages. Next, we will boost this scheme to be secure even if Alice
signs two messages of arbitrary length.

6.5610 : Handout 3: Problem Set 3 3

(d) Show how to use a collision resistant hash function H ′ : {0, 1}∗ → {0, 1}n to convert the one-time
signature scheme described above into a one-time signature scheme for signing messages of unbounded
length, i.e., messages in {0, 1}∗.
Hint: The size of secret keys and public keys should not change.

(e) Now, show how to convert the one-time signature scheme from part (d) into a two-time signature
scheme for signing messages of unbounded length, i.e., messages in {0, 1}∗. That is, construct a
signature scheme that is secure even if the adversary sees signatures on two messages of its choosing.
For the purposes of this problem, the Sign and Verify algorithms may be stateful; i.e., they can
behave differently when signing the first message and when signing the second message and they may
remember some information between invocations. However, we want the size of the secret key (that
Alice stores) and of the public key (that Alice publishes) to be the same as in part (d).

Hint: The size of secret keys and public keys should again not change. It may be useful to sign a
public key.

Problem 3-3. Commitments
Recall the notion of a commitment scheme: a cryptographic “safe” that allows one party to put some
information in the safe and then later open it in a binding way; see the lecture notes for the precise definition.
In class, we saw a hash-based commitment scheme that is secure assuming the hash function is modelled
as a random oracle. In this problem, we will construct a group-based commitment scheme. Our scheme is
associated with public parameters (in our hash-based construction you can think of the hash key hk as the
public parameter).

Let G be a group of large prime order q, and let g, h be randomly chosen elements of G. Define a commitment
scheme for messages in Zq, as follows:

Comg,h(x, r) = gxhr,

where we think of (g, h) as public parameters associated with our commitment scheme. Namely, to commit
to a message x ∈ Zq, draw random value r ← Zq and output gxhr (where the multiplication is in the group
G). In order to open the commitment, reveal x and r. For the following parts explain your answer in a few
sentences.

(a) Is this commitment scheme computationally hiding or statistically hiding? If it is not statistically
hiding, then under what assumption is it computationally hiding?

(b) Is this commitment scheme computationally binding or statistically binding? If it is not statistically
binding, then under what assumption is it computationally binding?

Problem 3-4. CRIME attack In the real world, messages can vary in length. However, information
theory means that encryption cannot generally hide the size of messages. In this problem, we will look at
the CRIME attack (https://en.wikipedia.org/wiki/CRIME), which exploits “compress then encrypt.”

For compression, we will use the gzip compression algorithm. This algorithm works by replacing repeated
sequences of (3 or more) characters with “pointers” to previous repetitions. This means that if there is
a large sequence of repeated characters, the compressed size will be smaller. If a secret and some text
are compressed together, then the compressed result will be shorter when there is a repeated sequence of
characters between the text and secret. A shorter message will then result in a shorter ciphertext, which
can be observed by the adversary.

Use this idea to discover the secret held on leaky.csail.mit.edu/encrypt. You can send messages to the
server with curl "leaky.csail.mit.edu/encrypt?kerb=test&msg=hello-world" , or use the provided
code in client.py.

The skeleton code file implements a local version of the server which will be invoked by default from
client.py. Use this local version to test your code before attacking the real server (which is rate-limited).
It is recommended that you create a virtual environment to install the cryptography library for running the

6.5610 : Handout 3: Problem Set 3 4

local server. You can find a tutorial at https://www.geeksforgeeks.org/python-virtual-environment/.
This code will also help you to develop your attack; in particular note how the secret and your message are
put together. When you are ready for the real server, set the LOCAL variable to False.

The secret consists of ASCII characters from the space character to the lowercase ‘z’ character (numbers
32 to 122 inclusive) and is 14 characters in length. Please provide your kerberos ID as the kerb parameter
to the server. Different IDs may have different secrets. Provide the secret you find as the answer to this
question, and attach your code on gradescope.

