
Massachusetts Institute of Technology Handout 3
6.5610: Applied Cryptography and Security February 27, 2023
Professors Henry Corrigan-Gibbs and Yael Tauman Kalai Due: March 10, 2023

Problem Set 2

This problem set is due on Friday, March 10, 2023 at 4:59 PM. Please note our late submission penalty
policy in the course information handout. Please submit your problem set, in PDF format, on Gradescope.
Each problem should be in a separate page.

You are to work on this problem set in groups. For problem sets 1, 2, and 3, we will randomly assign the
groups for the problem set. After problem set 3, you are to work on the following problem sets with groups
of your choosing of size three or four. If you need help finding a group, try posting on Piazza. See the course
website for our policy on collaboration. Each group member must independently write up and submit their
own solutions.

Homework must be typeset in LATEXand submitted electronically! Each problem answer must be provided
as a separate page. Mark the top of each page with your group member names, the course number (6.5610),
the problem set number and question, and the date. We have provided a template for LATEX on the course
website (see the Psets tab at the top of the page).

With the authors’ permission, we may distribute our favorite solution to each problem as the “official”
solution—this is your chance to become famous! If you do not wish for your homework to be used as an
official solution, or if you wish that it only be used anonymously, please note this in your profile on your
homework submission.

Problem 2-1. ElGamal variations

Consider the following two variants on the ElGamal encryption scheme, which use the same key generation
algorithm we saw in class, but different encryption algorithms:

•Enc1(pk,m): The message space is the group G, and to encrypt m ∈ G sample a random r ←
{1, . . . , |G|}, and output (gr, pkr ·m) ∈ G2 as the ciphertext.

•Enc2(pk,m): Let H : {0, 1}∗ → {0, 1}ℓ be a hash function. The message space is {0, 1}ℓ, and to encrypt
m ∈ {0, 1}ℓ sample a random r ← {1, . . . , |G|}, and output (gr, H(pkr)⊕m) as the ciphertext.

Decide whether each of the following is True or False, and explain why.

(a) Enc1 is CPA secure under the CDH assumption.

(b) Enc1 is CPA secure under the DDH assumption.

(c) Enc2 is CPA secure assuming H is a OWF and assuming CDH.

(d) Enc2 is CPA secure assuming H is modelled as a random oracle and assuming CDH.

(e) Enc2 is CCA secure assuming H is modelled as a random oracle and assuming CDH.

Problem 2-2. Encrypt-then-MAC
We discussed in class the importance of Encrypt-then-MAC for authenticated encryption. This problem will
explore the security of other variants.

Assume for this problem that MAC(k,m) is a secure MAC scheme against adaptive chosen message attacks,
and Enc(k,m),Dec(k, c) is a CPA-secure encryption scheme. Each problem part provides a new encryption
scheme (Enc′,Dec′). Say whether the new scheme is necessarily an authenticated encryption scheme under
the defintion presented in class. If yes, explain why in a few sentences, and if not, provide an attack.

(a) Enc′((k1, k2),m): return (Enc(k1,m),MAC(k2,m))
Dec′((k1, k2), (c, t)): m = Dec(k1, c); if t = MAC(k2,m), return m; else, return ⊥

6.5610 : Handout 3: Problem Set 2 2

k

G0(k)

G0(G0(k)) = F2(k, 0) G1(G0(k)) = F2(k, 1)

G1(k)

G0(G1(k)) = F2(k, 2) G1(G1(k)) = F2(k, 3)

Figure 1: Diagram of the “tree” of evaluations of F2, on key k ∈ {0, 1}n.

(b) Enc′((k1, k2),m): t = MAC(k2,m); return Enc(k1,m||t)
Dec′((k1, k2), c): m||t = Dec(k1, c); if t = MAC(k2,m), return m; else, return ⊥

(c) Enc′(k,m): return (Enc(k,m),MAC(k, c))
Dec′(k, (c, t)): if t = MAC(k, c), return Dec(k, c); else, return ⊥

(d) Enc′(k1, k2,m): c = Enc(k2,m); return (c,Enc(k2,MAC(k1, c)))
Dec′(k1, k2, (c, t)): if Dec(k2, t) = MAC(k1, c), return Dec(k2, c); else, return ⊥

Problem 2-3. Building and constraining PRFs.

In this problem, we will explore how to build a PRF from a PRG. Let G : {0, 1}n → {0, 1}2n be a length-
doubling PRG. For ease of notation, we write G(x) = G0(x)||G1(x), where G0 : {0, 1}n → {0, 1}n and
G1 : {0, 1}n → {0, 1}n. We also write i1, i2, . . . , im to be the m bits in the binary representation of any
i ∈ {0, 1}m. Then, we define the function Fm : {0, 1}n × {0, 1}m → {0, 1}n, which consists of m sequential
evaluations of either G0 or G1:

Fm(k, i) = Gim(· · · (Gi2(Gi1(k)) · · ·)).

In other words, we can think of evaluating Fm by assigning “labels” to the nodes of a binary tree of depth
m. The root node of this tree is labelled with the value k. For any node with label x, we label its left child
with value G0(x) and its right child with value G1(x). Then, after propagating labels from top to bottom
through the tree, we get that the i-th leaf node is labelled with value Fm(k, i). An illustration of this tree
for m = 2 is given in Figure 1.

(a) What is the time to evaluate Fm(k, ·) at a single point i ∈ {0, 1}m, in terms of m and the time to
evaluate G?

(b) Suppose that Fm is a PRF, for some m ≥ 1. Explain in 2-3 sentences whether Fm+1 a PRF.

(c) Alice wants to communicate the function Fm(k, ·) to Bob. Suppose Bob knows m. What is the
smallest number of bits Alice can send Bob, so that Bob can recover Fm(k, ·) (i.e., Bob can evaluate
Fm(k, ·) at all points in {0, 1}m)?

(d) Suppose now that Alice again wants to communicate Fm(k, ·) to Bob, except she wants to prevent
Bob from evaluating Fm(k, ·) at a fixed point i ∈ {0, 1}m. Suppose Bob knows m and i. What is the
smallest number of bits Alice can send Bob to achieve this?
Hint: It will be useful to think of the tree structure of Fm.

Problem 2-4. Programming: Birthday attack

Note: The starter code for this problem is posted on Piazza.

(a) Collisions, birthday paradox. Assume that each student at MIT gets a uniformly random 9 digit
student ID number. Find the ith line of inputs.txt, where i is your MIT ID number modulo B
where B = 1000. Assume there are 83 students in this class. What is the probability at least two
students have the same line of the table (the same i)? Express your answer as a decimal with 4

6.5610 : Handout 3: Problem Set 2 3

significant figures; any code for this part does not need to be attached. If you were given r > B
uniformly random IDs, and a table with B entries, what data structure could you use to efficiently
find such a collision in (on average) O(

√
B) time and space?

(b) Short discrete log. The number x found on the ith line of inputs.txt (where i is your MIT ID
modulo 1000) has a discrete log with respect to the generator g in the group Z∗

p. The exact values
of g and p can be found in the skeleton code file dl.py. Your task is to find the discrete log m such
that gm = x (mod p). This task is quite hard when x is large. However, Bob simply computed gm

for a small 48-bit message and thought that m was completely hidden. Therefore, you know that
the discrete log of x is only 48 bits (e.g 0 ≤ m < 248). Your attack should somehow exploit the fact
that the discrete log x is small. Use the collision/birthday paradox algorithm from part a to find the
message (discrete log) m for your input x. Provide m, in base 10, as the answer to this question and
attach your code on gradescope.

